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1
Introduction to Dynamical Systems

Roughly speaking, a dynamical system is a system that evolves (changes) in time accord-
ing to some rules. �is includes the position of the planets, moons, and stars, �ows of
�uids, and the movement of a wave or particle.

�e rules that govern these systems might be complex and unknown. We use physical
priniciples to derive a set of rules.

De�nition 1.1 (Dynamical System). A dynamical system is a 3-tuple of

• a state space X ,

• a set of times T ,

• a function Φ: T ×X → X .

Usually, one also adds a semigroup structure both to T and Φ.
We will use X = Rn or X = M a euclidean manifold (or X a function space). For

continuous systems, we have T = R or T = R+ = [0,∞). For discrete systems, we have
T = Z or T = N0.

Φ(t, x0) gives the state of the system at time t ∈ T if the system was initially (that is
say at t = 0) in the state x0 ∈ X .

�is de�nition is incredibly abstract and much too general for the purpose of this
course. In practice, we will think of a continuous dynamical system to be the �ow of an
autonomous ordinary di�erential equation

ẋ = f(x). (1.1)

Assuming (1.1) has global-in-time unique solutions (for example if f is Lipschitz), we may
de�ne the �ow via

Φ(t, x0) = x(t), where x is the unique solution to
{

ẋ= f(x),

x(0) = x0.

Note that Φ is a semigroup: it holds for all x0 ∈ X and t, s ∈ R

(1) Φ(0, x0) = x0,

(2) Φ(t,Φ(s, x0)) = Φ(s,Φ(t, x0)) = Φ(t+ s, x0).
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Observe in particular that Φ is invertible. In fact, if f is smooth, Φ is a continuous family
of di�eomorphisms of the state space X .

A discrete dynamical system might come from sampling a continuous time system.
�ereforem, choosing a time-step size t0, we may de�ne the map

F (x0) = Φ(t0, x0).

�en we obtain a discrete dynamical system

Φ̃ : Z×X → X : Φ̃(n, x0) = Φ(nt0, x0) = Fn(x0).

Here and in the future, we denote by Fn the n-th iterate of F 1. We will only consider 1 �at is
Fn = F ◦ · · · ◦ F︸ ︷︷ ︸

n times

.discrete dynamical systems to be of this form, i.e. to come from a homeomorphism2

2 Or very soon from a di�eomorphism in a speci�c
regularity class.

F : X → X .

Example 1.2 (Continuous systems).

(a) Simple harmonic oscillator: consider a mass m hanging of a spring. If x denotes the
displacement of a spring from its equilibrium position and using Hooke’s law3, then 3 Hooke’s law: the restoring force of a spring is propor-

tional to the displacement

FHooke = −kx,

k the spring constant.

the dynamical behaviour of the spring is given by

mẍ = −kx.

�is equation can be transformed into a �rst-order autonomous ODE of the form

d

dt

(
x

mv

)
=

(
v

−kx

)

(b) Two-body problem: the motion of two bodies through physical space R3 with masses
m1,m2 considering gravitational pull is given by

m1ẍ1 = F12(x1 − x2) = gm1m2(x2−x1)
|x1−x2|3

m2ẍ2 = F21(x1 − x2) = −F12(x1 − x2).

Here g > 0 denotes the gravitational constant.

(c) Hamiltonian systems: there is an underlying structure for (a) and (b). If H =

H(q, p) : X × TX → R is a function, we de�ne the correspoding Hamiltonian sys- Here, TX is the abstract tangent space of X . So if
X = Rn, then we will identify TX ∼= X .tem via

q̇ = ∂H
∂q

ṗ=−∂H∂p .
We interpret q to be the position and p as the momentum of our moving body.
For (a), we have X = TX = R and the Hamiltonian is given by

H(q, p) =
k2

2
− kq2

2m
.

For (b), we have X = TX = R3 × R3 and we have

H(q1, q2, p1, p2) = K − U,

K(p1, p2) =
|p1|2

2m1
+
|p2|2

2m2
,

U(q1, q2) =
gm1m2

|q1 − q2|
.
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K denotes the kinetic energy of the system and U denotes the potential energy of the
system.

(d) In�nite dimensional dynamical systems: such as the wave equation

∂2
t u−∆u = 0.

Example 1.3 (Discrete dynamical systems). (a) Any di�eomorphism of a euclidean
manifold M , f : M →M gives rise to a dynamical system

Φ: Z×M →M : Φ(n, x0) = fn(x0).

(b) Rotations of the circle: denote by S1 = {e2πiθ : θ ∈ [0, 1]} the circle and let M = S1.
For α ∈ [0, 1), consider the di�eomorphism Rα : S1 → S1 given by rotation with angle
2πα, that is

Rα(e2πiθ) = e2πi(θ+α).

Observe that then

e2πiθ

Rα(e
2πiθ)

2πα

Fig. 1.1: Rotation with angle 2πα

Rα(e2πiθ)n = e2πi(θ+nα) = Rnα(e2πiθ).

(c) �e Chirikov standard map: denote by Tn the n-dimensional torus4 and consider the 4 Tn = S1 × · · · × S1︸ ︷︷ ︸
n-times

.

di�eomorphism

f : T2 → T2 : f(e2πiθ, e2πip) = (e2πi(θ+p+K sin θ), e2πi(p+K sin θ)).

We will study the rotations on the circle in more detail in Chapter 2.
A general dynamical system can have very di�erent kinds of behaviour. �ere might be

order or chaos. We collect di�erent notions of order.

De�nition 1.4. Given a dynamical system (X,T,Φ), we de�ne

(i) We de�ne the orbit starting at x0 ∈ X by

γx0
= {Φ(t, x0) : t ∈ T}.

(ii) We call x0 ∈ X a stationary point5 if 5 Observe that for an autonomous ODE ẋ = f(x), a
point is a stationary point if and only if f(x0) = 0.
For a discrete system given by a homeomorphism
F : X → X , a point is stationary if and only if it is a
�xed point F (x0) = x0.

γx0 = {x0}.

(iii) An orbit γx0
is called periodic if there is t 6= 0 such that

Φ(t, x0) = x0.

(iv) An orbit γx0
is called quasi-periodic if t 7→ Φ(t, x0) is a quasi-periodic function6, that 6 For example the function

t 7→ sin(at) + sin(bt)

with a and b rationally independent is quasi-periodic.

is if
Φ(t, x0) = f(ω1t, . . . , ωnt),

where f : Tn → X , for some n ∈ N, is periodic in each component and ω1, . . . , ωn ∈
R are rationally independent.





2
KAM theory for diffeomorphisms of the circle

In this chapter, we will discuss the KAM theory for di�eomorphisms of the circle. We
begin by analysing the dynamics of the rotation map. Before we study small analytic
perturbations of the rotations, we need to de�ne the rotation number and we will prove
Denjoy’s theorem.

Before we start, we need to �x some notation: consider the circle S1 = {e2πiθ ∈ C :

θ ∈ [0, 1)} ∼= R/Z1. �en R forms a covering space of S1 with cover given by 1 We will relatively freely identify both constructions.

π : R→ S1 : x 7→ e2πix.

In particular, π(x+ z) = π(x) for all z ∈ Z.

De�nition 2.1. Let f : S1 → S1 a continuous map of the circle. �en f̃ : R→ R is called
a li� of f to R if

π ◦ f̃ = f ◦ π.

Lemma 2.2. Every continuous map f : S1 → S1 has a li� f̃ to R.

Proof. Exercise.

Remark 2.3. 1) If f : S1 → S1 is a homeomorphism of the circle, then f̃ is strictly
monotone. If f is orientation-preserving, then f̃ is increasing. If f is orientation-
reversing, then f̃ decreases.

2) If f̃ : R → R is a li� of f : S1 → S1, then so is f̃ + m for any m ∈ Z. Vice versa, all
li�s di�er only by a translation by m ∈ Z.

3) For every li� it holds
f̃(x+ 1) = f̃(x) + d.

If f : S1 → S1 is a homeomorphism, then d ∈ {±1}.2 Here, d = 1 if and only if f is 2 �e opposite direction is false in general.

orientation-preserving. d is called the degree of f and x 7→ F (x) − dx is periodic with
period 1.

4) �e map f̃(x)− x is periodic with period 1.

Exercise. Let f : S1 → S1 be an orientation-reversing homeomorphism. Show that f has
exactly two �xed points.

Example 2.4. Let f : S1 → S1 : f(e2πiθ) = e2πi(θ+α) the rotation by angle α ∈ [0, 1).
�en f̃(x) = x+ α is a li�.
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1 The dynamics of the rotation map

De�nition 2.5. For α ∈ [0, 1) we de�ne the map

Rα : R/Z→ R/Z : Rα(x) = (x+ α) mod Z

as the rotation of the circle S1 = R/Z.

Observe that Rnα(x0) = x0 + nα mod Z for any n ∈ Z. We will now study the
dynamics of the rotation map.

Proposition 2.6. Let α ∈ [0, 1).

(1) If α ∈ Q is rational, then every orbit of Rα is periodic. If α = p
q with p, q coprime,

thenq is the period of each orbit.

(2) If α ∈ R \Q is irrational, then every orbit is dense3 in R/Z. 3 Sometimes, dynamical systems with this property are
called minimal.

In order to prove the density of orbits, we rely on a result from number theory.

Lemma 2.7 (Dirichlet’s approximation theorem). Let α ∈ R and N ∈ N. �en there is a
pair of integers (p, q) ∈ Z× N with 1 ≤ q ≤ N such that

|αq − p| < 1

N
.

Proof. 4 �is can be proved via the pigeonhole principle. Consider the N + 1 numbers kα, 4 �ere is a deep connection to continued fractions: for a
number α ∈ R, we de�ne

α = bαc+ 1
α1

= a0 + 1
α1

α1 = bα1c+ 1
α2

= a1 + 1
α2

...

then

α = a0 +
1

a0 +
1

a1 +
1

. . . +

...

an−1 +
1

αn

and we call

pn

qn
= a0 +

1

a0 +
1

a1 +
1

. . . +

...

an−1 +
1

an

the n-th convergent of α. �en the following results hold
true: ∣∣α− pn

qn

∣∣ < 1

q2n
.

And vice versa, if ∣∣α− p

q

∣∣ < 1

q2
,

then
p

q
∈
{
pn

qn
,
pn+1 + pn

qn+1 + qn
,
pn+2 − pn+1

qn+2 − qn+1

}

k = 0, . . . , N . �ey can be uniquely wri�en as

kα = mk + xk, mk ∈ Z, 0 ≤ xk < 1.

Now the set {x0, . . . , xN} ⊂ [0, 1) consists of N + 1 numbers, hence by the pigeonhole
principle there must be two numbers xi and xj with i < j such that

|xj − xi| <
1

N
.

But now observe that

|(j − i)α− (mj −mi)| = |jα−mj − (iα−mi)| = |xj − xi| <
1

N
.

�is proves the theorem with the choice q = (j − i) ∈ N and p = mj −mi ∈ Z.

Using that 1 ≤ q ≤ N , the following corollary is an immediate consequence.

Corollary 2.8. For any real number α ∈ R there exist in�nitely many pairs of integers
(p, q) ∈ Z× N such that ∣∣α− p

q

∣∣ < 1

q2
.

Now we are able to prove Proposition 2.6.
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Proof. Step 1: rational angles If α = p
q and x0 ∈ R/Z is arbitrary, then

Rqα(x0) = x0 + q · p
q

mod Z = x0.

Hence, γx0
is a periodic orbit. If p and q are coprime, then q is the smallest number such

that q · pq ∈ Z.
Step 2: irrational angles Fix α ∈ R \Q and x0 ∈ [0, 1). We �rst prove:
Claim 1: if m 6= n, then Rmα (x0) 6= Rnα(x0). Indeed, assume that Rmα (x0) = Rnα(x0), then

x+ nα mod Z = x+mα mod Z,

which implies that
(m− n)α ∈ Z.

But since α /∈ Q, this can only be satis�ed if m = n.
Claim 2: the orbit is dense5. �erefore, let ε > 0. By Corollary 2.8 there is a pair (p, q) ∈ 5 One could also use Weyl’s equidistribution criterion.

�is states that a sequence (xn)n∈N0
is equidistributed

in [0, 1] if and only if

lim
N→∞

1

N

N−1∑
k=0

e2πi`xn = 0

holds for every ` 6= 0.
Applying this to the sequence xn = Rnα(x0) for

α ∈ R \ Q gives equidistribution. Actually, the
dynamical system is ergodic: every measurable, invariant
set is either a Lebesgue null set or of full Lebesgue
measure.

Z× N with 1
q < ε such that

|qα− p| < 1

q
< ε.

But this readily implies that

|(Rqα(x0)− x0) mod Z| = |qα− p| < ε.

Consider, for M large enough the set of points

{x0, R
q
α(x0), R2q

α (x0), . . . , RMq
α (x0)}.

�en this set breaks S1 into M intervals of length smaller than ε. Hence, for every x ∈
[0, 1) there must exist k ∈ {0, . . . ,M} such that

|x−Rkqα (x0)| < ε,

which proves the density of the orbit.

2 Rotation number and Denjoy’s theorem

In the remaining part of this chapter we will be concerned with the question: when does
an arbitrary (orientation-preserving) homeomorphism (or di�eomorphism) behave like a
rotation? To understand which rotation to choose, we introduce the rotation number.

De�nition 2.9. Let f : S1 → S1 an orientation-preserving homeomorphism and f̃ : R→
R a li� of f and let x0 ∈ [0, 1). �en the rotation number of f is given by

ρ(f) =
[

lim
|n|→∞

f̃n(x0)− x0

n

]
mod Z. (2.1)

�eorem 2.10. Let f : S1 → S1 an orientation-preserving homeomorphism. �en the
rotation number ρ(f) exists and is independent of the choice of x0 ∈ [0, 1).
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Proof. Step 1: �e rotation number is independent of the choice of x0. Fix x0, y0 ∈ [0, 1).
Let w.l.o.g. x0 < y0. �en it holds by Remark 2.3 that

f̃n(y0)− f̃n(x0) < f̃n(y0 + 1)− f̃n(y0) = 1.

Now we can estimate∣∣∣∣∣ f̃n(x0)− x0 − (f̃n(y0)− y0)

n

∣∣∣∣∣ ≤ |f̃n(x0)− f̃n(y0)|+ |x0 − y0|
n

≤ 2

n
−−−−→
n→∞

0.

Hence, the limit is independent of the choice of x0.
Step 2: Existence of the limit. We will distinguish the cases: f has a periodic point and f
has no periodic point.

If f has a periodic point with period m ∈ N, this implies that there must be an element
z ∈ Z and x0 ∈ [0, 1] such that f̃m(x0) = x0 + z. Hence, it must hold

f̃km(x0) = x0 + kz, k ∈ N.

But from this, we conclude that

lim
k→∞

|f̃km(x0)− x0|
km

=
kz

km
=

z

m
∈ Q.

We need to show that the full sequence is converging. �erefore, write n = km + r, with
0 ≤ r < m. Since f̃ − Id is periodic and continuous, we �nd a number M > 0 such that

|f̃(x)− x| ≤M

for all x ∈ R and we may conclude

|f̃n(x0)− x0 − (f̃km(x0)− x0)

n
=
|f̃r(f̃km(x0))− f̃km(x0)|

n
≤ M

n
−−−−→
n→∞

0.

If f has no periodic points, then we know that f̃n(x)−x /∈ Z for any n ∈ Z and x ∈ R.
Since f̃n − Id is periodic and continuous, this means that there is z ∈ Z such that

z < f̃n(x)− x < z + 1

for all x ∈ R. Choosing x = 0, we �nd that

z < f̃n(0) < z + 1

and choosing x = f̃n(0) und using monotonicity, we �nd

f̃n(0) + z = f̃n(z) ≤ f̃2n(0) ≤ f̃n(z + 1) = f̃n(0) + z + 1.

Hence,
z < f̃2n(0)− f̃n(0) < z + 1

and by induction
z < f̃kn(0)− f̃ (k−1)n(0) < z + 1
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holds for all k ∈ N and n ∈ Z. Summing over k, we �nd

kz < f̃kn(0) < k(z + 1)

for all k, n ∈ N, or dividing by kn, we have

z

n
<
f̃kn(0)− 0

kn
<
z + 1

n

for every k, n ∈ N. In particular, it holds∣∣∣∣∣ f̃kn(0)− 0

kn
− f̃n(0)− 0

n

∣∣∣∣∣ < 1

n
. (2.2)

But now, we obtain by (2.2) that∣∣∣∣∣ f̃n(0)− 0

n
− f̃m(0)− 0

m

∣∣∣∣∣ ≤
∣∣∣∣∣ f̃n(0)

n
− f̃mn(0)− 0

nm

∣∣∣∣∣+

∣∣∣∣∣ f̃mn(0)− 0

mn
− f̃m(0)

m

∣∣∣∣∣
≤ 1

n
+

1

m
.

�is proves that the sequence
( f̃n(0)

n

)
n

is Cauchy and so it has a limit.

Example 2.11. For α ∈ [0, 1) it is ρ(Rα) = α.

Lemma 2.12. Let f : S1 → S1 an orientation-preserving homeomorphism.

1) If h : S1 → S1 is an orientation-preserving homeomorphism, then

ρ(f) = ρ(h−1 ◦ f ◦ h).

2) If m ∈ N, then
ρ(fm) = mρ(f) mod Z.

3) ρ(f) ∈ Q is rational if and only if f has a periodic orbit.

Proof. 2) Note that

(f̃m)n(x0)− x0

n
=
f̃mn(x0)− x0

n
= m

f̃mn(x0)− x0

mn
.

3) We have already seen that if we have a periodic orbit, then the rotation number is
rational. Now assume that the rotation number is rational with ρ(f) = p

q ∈ Q. We will
show that we can construct an orbit of period q.

By 2), we have
ρ(fq) = qρ(f) mod Z = 0.

It hence su�ces to show that if for a general homeomorphism we have ρ(f) = 0, then f
has a stationary point. We prove the contraposition: assume f does not have a stationary
point, that is f(x0) 6= x0 for every x0 ∈ S1. Consider the li� with f̃(0) ∈ [0, 1). �en also
f̃(x) − x /∈ Z for every x ∈ [0, 1), and by periodicity we conclude that f̃(x0) − x0 /∈ Z
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for every x ∈ R. By continuity, the assumption that 0 < f̃(0) < 1 and compactness of the
interval [0, 1] this implies that there is a positive δ > 0 such that

δ ≤ f̃(x0)− x0 ≤ 1− δ

for every x0 ∈ R. Choosing x0 = f̃n(0), n ∈ N, we obtain

δ ≤ f̃n+1(x0)− f̃n(x0) ≤ 1− δ.

for n ∈ N0. Summing over the �rst n, we obtain

nδ ≤ f̃n(0)− 0 ≤ n(1− δ)

for every n ∈ N, and hence ρ(f) ∈ [δ, 1 − δ]. In particular, ρ(f) 6= 0. �is concludes the
proof.

Later, we will consider di�eomorphisms of the form f(x) = x + ρ + η(x), where η is
periodic.

Lemma 2.13. Let η be a continuous, periodic function. If the di�eomorphism f(x) =

x+ ρ+ η(x) satis�es ρ(f) = ρ, then there exists x0 ∈ S1 such that η(x0) = 0.

Proof. Observe by induction that

f̃n(x0) = x0 + nρ+

n−1∑
k=0

η ◦ f̃k(x0).

Hence, if ρ(f) = ρ, we get

lim
n→ ∞

1

n

n−1∑
k=0

η ◦ f̃k(x0) = 0.

But this must mean that η has a root since otherwise by continuity it would be strictly
bounded away from zero.

Exercise. Consider the di�eomorphism

f(x) = x+
1

2
+

1

4π
sin(2πx).

(a) Compute ρ(f).

(b) Find two periodic orbits.

(c) Find a non-periodic orbit.

2.1 Irrational rotation numbers and Denjoy’s theorem

To understand the dynamic even be�er, we consider the set of all limit points of an orbit,
the so-called ω-limit set.
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De�nition 2.14. Let f : S1 → S1 be an orientation-preserving homeomorphism and
x0 ∈ S1. We de�ne the ω-limit set of the orbit γx0

by

ω(x0) = {y ∈ S1 : ∃n1 < n2 < . . . s.t. fnk(x0) −−−−→
k→∞

y}.

We can rephrase the result from Proposition Proposition 2.6.

Example 2.15. If α ∈ [0, 1) \Q and f = Rα is the rotation, then

ω(x0) = S1 for all x0 ∈ S1.

�at all orbits have the same limit set is no coincidence as the following theorem
demonstrates.

�eorem 2.16. Let f : S1 → S1 be an orientation-preserving homeomorphism and ρ(f) ∈
[0, 1) \Q. �en ω(x0) = ω(y0) for every x0, y0 ∈ S1.

Proof. Let x0 ∈ S1 and x ∈ ω(x0). Let ε > 0 �xed. �en there must be a pair of integers
m > n such that

|fm(x0)− x| < ε and |fn(x0)− x| < ε.

Consider the closed interval I = [fm(x0), fn(x0)] ⊂ [x− ε, x+ ε] in S1.
Claim: for every y0 ∈ S1, there exists k ∈ N such that fk(y0) ∈ I . Indeed, once we have
demonstrated this claim, the proof of the theorem follows: since ε was chosen arbitrarily,
this shows that we may construct a sequence y` = fk`(y`−1) starting from y0 and such
that |y` − x| < 1

` . From this we conclude that x ∈ ω(y0) and since the assertion is
symmetric in x0 and y0 the theorem.

It remains to prove the claim. We trace back, from where we can end up in I : de�ne
the sets I0 = I and

Ik = f−k(m−n)(I) = [fkn−(k−1)m(x), f (k+1)n−km(x)],

hence the right endpoint of Ik is the le� endpoint of Ik+1 and the intervals wrap around
the circle. Consider now the union of all of these intervals

n⋃
k=0

Ik.

�is is one large, closed interval. We now want to show that there is N large enough so
that

⋃n
k=0 Ik = S1. Suppose for the contrary, that this is not the case. �en the right

endpoint of the interval must be bounded to the le� of fm(x0) and so

lim
k→∞

f−k(m−n)(x0) = p ∈ S1

must exist. However, this cannot be since

p = lim
k→∞

f−k(m−n)(x0)

= lim
k→∞

f−(k−1)(m−n)(x0)

= f (m−n)
(

lim
k→∞

f−k(m−n)(x0)
)

= f (m−n)(p),
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so thatp were a periodic point. But since the rotation number ρ was irrational, there are
no periodic points. So, we conclude

S1 =

N⋃
k=0

Ik

for some N ∈ N. For y0 ∈ S1 �xed, there must be k ∈ N with y0 ∈ Ik and so

fk(m−n)(y0) ∈ I.

�is proves the claim and so the theorem.

Next, we want to understand the structure of ω = ω(x0) for irrational rotation num-
bers ρ(f) /∈ Q.

Recall that a set C is called a Cantor set if it is a compact, totally disconnected set
without isolated points.

�eorem 2.17. Given any Cantor set C ⊂ [0, 1) and any ρ ∈ [0, 1) \ Q, there is an
orientation-preserving homeomorphism f : S1 → S1 such that

ω(x0) = C and ρ(f) = ρ.

Remark 2.18. One can show that for any orientation-preserving homeomorphism of the
circle either ω = S1 or ω is a Cantor set.

We now introduce an equivalence class of dynamical systems.

De�nition 2.19. Let f, g : S1 → S1 be orientation-preserving di�eomorphisms. �en f
and g are called (topologically) conjugate if there is a homeomorphism h : S1 → S1 such
that

g ◦ h = h ◦ f.

Note that we could have equivalently wri�en that f = h−1 ◦ g ◦ h. If f and g are topo-
logically conjugate, then all topological dynamical properties are the same. In particular, if
ω 6= S1 and ρ(f) /∈ Q, then f cannot be conjugate to a rotation.

What are su�cient conditions for an orientation-preserving homeomorphism with
ρ(f) /∈ Q to be conjugate to the rotation Rρ

We will cite here two theorems due to Denjoy: the �rst gives a positive answer under
su�cient regularity, the second a negative answer under lack of said regularity.

�eorem 2.20 (Denjoy, 1932). If f : S1 → S1 is a C2-di�eomorphism with ρ = ρ(f) /∈ Q
irrational, then f is topologically conjugate to the rotation Rρ. It su�ces to assume that f ′

has bounded variation.

�eorem 2.21 (Denjoy, 1946). Let ρ ∈ [0, 1) \ Q and ε > 0. �ere exists a C2−ε-
di�eomorphism f : S1 → S1 with ρ(f) = f which is not conjugate to a rotation.

With these results, we conclude the discussion about general di�eomorphisms on the
circle.
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3 KAM theory for analytic perturbations of rotations

�e previous results show that C2-di�eormophisms on the circle with irrational rota-
tion number are topologically conjugate to an irrational rotation. But then h is merely a
homeomorphism.

�estion: can we say more about the regularity of h? For example, can we say that h
is as regular as f? �is is a very di�cult questions for which the methods developed by
Poincaré and Denjoy do not work. It will turn out that if we can even say something, then
we also encounter a loss of regularity.

We will consider only small analytic perturbations of the rotations, that is we will
consider analytic di�eomorphism f : S1 → S1 of the form

f(x) = x+ ρ+ η(x) mod Z,

with ρ /∈ Q and η periodic and analytic. Note that we can assume that ρ(f) = ρ: if
f(x) = x+ α+ µ(x) satis�es ρ(f) = ρ, then we can consider

f̃(x) = x+ ρ+ (α− ρ+ µ(x)) =: x+ ρ+ η(x)

instead. We want to measure the regularity and size of η, as we think of η to be small.

De�nition 2.22. For �xed σ > 0, we de�ne the strip

Sσ

C

Fig. 2.1: �e strip Sσ

Sθ = {z ∈ C : | Im z| < σ}

and we de�ne the set of analytic functions

Bσ =
{
η ∈ C(Sσ;C) : η is analytic in Sσ, η(z) = η(z + 1) for all z ∈ Sσ
and ‖η‖σ <∞} .

Here, we de�ne
‖η‖σ = sup

z∈Sσ
|η(z)|.

We will assume that for some σ > 0

η ∈ Bσ and ‖η‖σ < ε,

where ε > 0 will be speci�ed later6. 6 We will see that the change of coordinates h will only
be analytic in Bσ−δ for some δ > 0.

3.1 Heuristics and Diophantine numbers

We start by discussing a heuristical approach. �e results of this will be used later to set
up an iterative scheme.

Recall that we consider the di�eomorphism

f(x) = x+ ρ+ η(x).

We look for an analytic function h : S1 → S1 such that

f ◦ h = h ◦Rρ.
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Making the ansatz that
h(x) = x+H(x),

where H is an analytic and periodic function, we �nd that

f(x+H(x)) = x+H(x) + ρ+ η(x+H(x)) = x+ ρ+H(x+ ρ) = h ◦Rρ(x).

Rearranging this, we obtain

H(x+ ρ)−H(x) = η(x+H(x)) = η(x) + η′(x)H(x) + h.o.t. ≈ η(x).

Consequently, as an approximation, we �rst consider the equation

H(x+ ρ)−H(x) = η(x). (2.3)

�en, since H and η are both periodic, we can apply the Fourier transform7 on both sides 7 η̂n =

∫ 1

0
η(x)e−2πinx dx

to obtain
e2πinρĤn − Ĥn = η̂n, n ∈ Z.

Since ρ /∈ Q, it is e2πinρ − 1 6= 0 for every n 6= 0, hence we obtain

H(x) =
∑
n6=0

η̂n
e2πinρ − 1

e2πinx. (2.4)

Two problems ensue from this de�nition:

1) Equation (2.3) does not hold since

H(x+ ρ)−H(x) =
∑
n 6=0

η̂ne
2πinx = η(x)− η̂0 = η(x)−

∫ 1

0

η(y) dy. (2.5)

We can deal with this problem later in the proof.

2) Does the series in (2.4) even have a chance to converge? �e problem is that e2πinρ −
1 might be very small very o�en.

�e second problem is called the problem of small denominators. �is will appear again
when we study the n-body problem of celestial mechanics. For a given rotation number
ρ /∈ Q, we don’t know how well-behaved these denominators are. But, we can resort to
number theory again.

Last time, we have seen that any ρ ∈ R could be approximated by rational numbers
such that ∣∣ρ− p

q

∣∣ < 1

q2
.

It turns out that some numbers can be approximate be�er than others. �is leads us to the
Diophantine classes of numbers.

De�nition 2.23. �e irrational number ρ is of Diophantine type (K, ν) with K, ν > 0 if∣∣ρ− p

q

∣∣ > K|q|−ν

holds true for all (p, q) ∈ Z× N.
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We can w.l.o.g. assume that K ≤ 1. In particular, there is no number of Diophantine
type (1, 2), but generically that is the best we can do approximating a number as the
following proposition demonstrates.

Proposition 2.24. For every ν > 2, almost every irrational number ρ is of type (K, ν) for
some K > 0.

Proof. Let ν > 2. It is enough to show that every irrational number ρ ∈ [0, 1] is of the
type (K, ν) for some K > 0.

First �x K > 0 and p
q ∈ Q. �en de�ne

IK,p,q := {ρ ∈ [0, 1] \Q :
∣∣ρ− p

q

∣∣ ≤ K|q|−ν}.
We will show that ∣∣∣∣∣∣

⋂
n∈N

⋃
q∈N

q⋃
p=1

I 1
n ,p,q

∣∣∣∣∣∣ = 0. (2.6)

First note that IK,p,q is essentially an interval up to a set of measure zero, hence we obtain

|IK,p,q| ≤ 2K|q|−ν .

But this implies, taking the union over all possible p = 1, . . . , q that still for �xed q∣∣∣∣∣
q⋃
p=1

IK,p,q

∣∣∣∣∣ ≤ 2K|q|−ν+1.

Now, taking the union over all possible q, we �nd∣∣∣∣∣∣
⋃
q∈N

q⋃
p=1

IK,p,q

∣∣∣∣∣∣ ≤ 2K
∑
q∈N

q−ν+1 < 2cK

for some c > 0 since −ν + 1 < 1 and hence we obtain convergence of the series. But this
readily implies (2.6).

We can now use the Diophantine type of a number to get explicit control of the small
denominator.

Lemma 2.25. If ρ ∈ [0, 1) \Q is of Diophantine type (K, ν), then

|e2πinρ − 1| ≥ 4K|n|−(ν−1)

for all n 6= 0.

Proof. Let m ∈ N. �en using e2πim = 1, we obtain

|e2πinρ − 1| = |e2πim(e2πi(nρ−m) − 1)|
= |e2πi(nρ−m) − 1|
= 2| sin(π(ρn−m))|,
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where we used in the last step that |eix − 1| = 2 sin(x/2). Using the inequality

| sin(πx)| ≥ 2|x|, |x| ≤ 1

2
,

we conclude that
|e2πinρ − 1| ≥ 4|ρn−m| ≥ 4K|n|−(ν−1).

�is concludes the proof.

Using Cauchy’s theorem, we get exponential decay for the Fourier coe�cients of an
analytic function.

Lemma 2.26. Let η ∈ Bσ . �en

|η̂n| ≤ ‖η‖σe−2πσ|n|. (2.7)

Proof. Recall that

η̂n =

∫ 1

0

η(x)e−2πinx dx.

Denote by C the contour in C given by concatenating the path [0, 1], [1, 1 ± iσ], [1 ±
iσ,±iσ] and [±iσ, 0]. By Cauchy’s integral theorem, it holds

C

1

iσ

Fig. 2.2: �e contour C

∫
C

η(z)e−2πinz dz = 0.

Combining this with periodicity, we �nd that∫
[0,1]

η(z)e−2πinz dz =

∫
[±iσ,1±iσ]

η(z)e−2πinz dz =

∫ 1

0

η(x± iσ)e2πinxe∓2πnσ dx.

Choosing either the pass on the upper or lower halfplane, depending on the sign of n, we
obtain

|η̂n| ≤ ‖η‖σe2π|n|σ

which concludes the proof.

Remark 2.27. Also the inverse statement is true. Assume that (2.7) holds true, then the
function

η(x) =
∑
n∈Z

η̂ne
2πinx

is analytic in the strip Sσ and

‖η‖σ−δ ≤
C

δ
.

We may apply these results to the function

H(x) =
∑
n6=0

η̂n
e2πinρ − 1

e2πinx.

and obtain the following bound.
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Proposition 2.28. If ρ is of type (K, ν) and η ∈ Bσ and δ < σ, then H ∈ Bσ−δ with

‖H‖σ−δ ≤
Γ(ν)

K(2πδ)ν
‖η‖σ, (2.8)

where Γ denotes the standard Γ-function

Γ(ν) =

∫ 1

0

xν−1e−x dx.

Proof. It su�ces to prove absolute convergence of the series locally uniformly in Sσ−δ ,
then analyticity follows. Indeed, using Lemmas 2.25 and 2.26, we obtain for z ∈ Sσ−δ

|H(z)| ≤
∑
n 6=0

|η̂n|
|e2πinρ − 1|

|e2πinz|

≤
∑
n 6=0

|n|ν−1

4K
‖η‖σe−2πσ |n|e2π|n|(σ−δ)

≤ ‖η‖σ
4K

∑
n6=0

|n|ν−1e−2πδ|n|

=
‖η‖σ
2K

∞∑
n=1

nν−1e−2πδn

≤ Γ(ν)

K(2πδ)ν
‖η‖σ.

Here, in the last step, we use
∞∑
n=1

nν−1e−2πδn ≤
∫ ∞

0

yν−1e−2πδy dy

=
1

(2πδ)ν

∫ ∞
0

xν−1e−x dx

=
1

(2πδ)ν
Γ(ν),

which completes the estimate.

Next, we need to make sure that we have actually constructed an analytic di�eomor-
phism.

Proposition 2.29. Assume that 2δ < σ and

(2π)2Γ(ν)

K(2πδ)ν+1
‖η‖σ < 1.

�e map h(z) = z + H(z) is analytic with analytic inverse on the domain Sσ−2δ . Further-
more, h−1 is well-de�ned on Sσ−3δ .

To prove the proposition, we rely on another lemma from complex analysis.

Lemma 2.30. Let η ∈ Bσ . �en for every 0 < δ < σ it holds

‖η′‖σ−δ ≤
2π

δ
‖η‖σ.
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Proof. From Cauchy’s integral formula, we know that for every z ∈ Sσ−δ and every ball
Br(z) ⊂ Sσ , we may write

η′(z) =

∫
∂Br(z)

η(w)

(w − z)2
dw.

Hence, we obtain the estimate

|η′(z)| ≤ ‖η‖σ
∫
∂Br(z)

dw

r2
=

2π

r
‖η‖σ.

Sending r to δ proves the claim.

Proof of Proposition 2.29. Analyticity of H and thus of h on Sσ−δ follows by construction.
We only need to make sure that h is invertible. Recall that it is enough to �nd a domain so
that ‖H ′‖ < 1 holds true as this guarantees injectivity.

Now Lemma 2.30 and Proposition 2.28 imply that

‖H ′‖σ−2δ ≤
2π

δ
‖H‖σ−δ ≤

(2π)2Γ(ν)

K(2πδ)ν+1
‖η‖σ < 1. (2.9)

Hence, h restricted to Sσ−2δ is a di�eomorphism onto its image.
For the second part of the claim, we realise that by Proposition 2.28 and the assumption

‖H‖σ−δ ≤
Γ(ν)

K(2πδ)ν
‖η‖σ < δ. (2.10)

To summarise: we have found an analytic change of coordinates h(x) = x + H(x).
Two problems remain though:

1) h is not the correct change of variables, as we have ignored higher order terms.
Intuitively though, h is a step into the right direction and we may try to iterate the
procedure.

2) If we constantly lose a �xed δ in analyticity during the iteration, we cannot have
hope of constructing an analytic di�eomorphism. We need to choose a clever iteration
scheme.

3.2 Main theorem and Newton’s method

Before it is time to discuss how we can iterate the procedure introduced above, it is time
to state the main theorem.

�eorem 2.31 (Arnold 1961). Assume that ρ is of Diophantine type (K, ν) and σ > 0. �en
there exists ε = ε(K, ν, σ) > 0 such that if

f(x) = x+ ρ+ η(x)

has rotation number ρ and η ∈ Bσ satis�es ‖η‖σ < ε, then there exists an analytic and
invertible change of variables h which conjugates f to the rotation Rρ:

Rρ = h−1 ◦ f ◦ h.
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Recall that so far we have heuristically taken the following approach: we want to �nd
h = Id +H such that

H ◦Rρ −Rρ = η ◦ h ≈ η,

that is, we have linearised the equation to �nd a solution. Compare this to Newton’s
method:

x

y
F (x)

xnxn+1

F (xn)

Fig. 2.3: Iteration step for Newton’s method

Consider a map F ∈ C2(R) and we look for a root x̄ of F . To do so, consider some
point x0 and de�ne the linearisation around x0 by

Lx0
(x) = F (x0) + F ′(x0)(x− x0).

We can �nd a root of Lx0
(provided F ′(x0) 6= 0), that is

x1 = x0 −
F (x0)

F ′(x0)
.

Now, we want to iterate this and set

xn+1 = xn −
F (xn)

F ′(xn)
.

For this to work, we require that F ′ 6= 0 in a neighborhood of the root x̄. We can show
very fast convergence: applying Taylor’s theorem, we get

Ly(x̄)− F (x̄) =
1

2
F ′′(ξ)(x̄− y)2

for some ξ ∈ [x̄, y]. Now set εn = |x̄ − xn|. From the formula, we conclude that there is
ξn ∈ [x̄, xn] such that

F (xn)− (x̄− xn)F ′(xn) =
1

2
F ′′(ξn)(xn − x̄)2.

Dividing by F ′(xn) and using the de�nition of xn+1, this leads to

xn+1 − x̄ =
F ′′(ξn)

2F ′(xn)
(xn − x̄)2

If |F ′| is bounded from below in a neighborhood of x̄ and since F ′′ is bounded from
above, there is a constant C > 0 such that

εn+1 ≤ Cε2
n

and hence by iteration
|xn − x̄| ≤ Cε2n

0

superexponential convergence of xn to x̄.
Now, with Newton’s method in mind, we will prove �eorem 2.31 by an iterative

argument relying on the heuristics studied in the previous subsection. In order to achieve
this, we need to understand f1 = h−1 ◦ f ◦ h, where h(x) = x + H(x) is the analytic
change of variables constructed before. �is is part of the following two propositions.
�ey make rigorous our intuitive guess that f1 = Rρ + η̃, where ‖η̃‖ . ‖η‖2σ.
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Proposition 2.32. Assume that 4δ < σ and

(2π)2Γ(ν)

K(2πδ)ν+1
‖η‖σ < 1.

�en it holds h−1(z) = z −H(z) + g(z), where

‖g‖σ−4δ ≤
(2π)2Γ(ν)2

K2(2πδ)(2ν+1)
‖η‖2σ.

Proof. De�ne g by
g(z) = h−1(z)− z +H(z).

�en using that h−1 = z −H(z) + g(z), we obtain for every z ∈ Sσ−2δ

z = h−1 ◦ h(z) = h−1(z +H(z)) = z +H(z)−H(z +H(z)) + g(z +H(z)). (2.11)

Solving for g, we �nd

g(z +H(z)) = H(z +H(z))−H(z) =

∫ 1

0

H ′(z + sH(z))H(z) ds.

So, we may de�ne g for each ξ = h(z) by

g(ξ) = H(h−1(ξ))

∫ 1

0

H ′(h−1(ξ) + sH(h−1(ξ))) ds.)

As in the proof of Proposition 2.29, we may argue using ‖h‖σ−δ < δ that since the image
of Sσ−3δ under h must contain Sσ−4δ , we have for ξ ∈ Sσ−4δ that h−1(ξ) ∈ Sσ−3δ and
furthermore h−1(ξ) + sH(h−1(ξ)) ∈ Sσ−2δ so that we may apply the estimates from
equations (2.8) and (2.9) to obtain

‖g‖σ−4δ ≤ ‖H‖σ−δ‖H ′‖σ−2δ ≤
Γ(ν)

K(2πδ)ν
‖η‖σ

(2π)2Γ(ν)

K(2πδ)ν+1
‖η‖σ.

�is proves the claim.

Finally, we need to understand how large is the error that we make by linearisation.
�erefore, de�ne f1 = h−1 ◦f ◦h. Intuitively, f1 is closer to a rotation and we expect from
Newton’s method that the error is also quadratic in terms of ‖η‖2σ . �is is demonstrated in
the following proposition.

Proposition 2.33. Assume that 4δ < σ and

(2π)2Γ(ν)

K(2πδ)ν+1
‖η‖σ < 1.

�en f1(x) = h−1 ◦ f ◦ h(x) = x+ ρ+ η1(x), where

‖η1‖σ−6δ ≤
(4π)2Γ(ν)2

K2(2πδ)(2ν+1)
‖η‖2σ.
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Proof. Using the previous results, we can spell out f1 explicitly:

f1(x) = h−1 ◦ f ◦ h(x)

= h−1(x+H(x) + ρ+ η(x+H(x)))

= x+H(x) + ρ+ η(x+H(x))−H(x+H(x) + ρ+ η(x+H(x)))

+ g(x+H(x) + ρ+ η(x+H(x)))

= x+ ρ+ [H(x)−H(x+ ρ) + η(x)] + [η(x+H(x))− η(x)]

+ [H(x+ ρ)−H(x+ ρ+H(x) + η(x+H(x))]

+ g(x+H(x) + ρ+ η(x+H(x))).

(2.12)

Now de�ne
η1(x) = f1(x)− x− ρ.

We want to obtain an estimate for η1. �e reason for spli�ing the term in this particular
fashion becomes clear immediately: the �rst bracket was the linearised equation for H ,
see (2.5), so we �nd

H(x)−H(x+ ρ) + η(x) = η̂0.

�e second bracket we may rewrite as

η(x+H(x))− η(x) =

∫ 1

0

η′(x+ sH(x))H(x) ds

and as before we obtain a bound for this term using the assumptions

‖η(z +H(z))− η(z)‖Sσ−4δ
≤ ‖H‖σ−δ‖η′‖σ − 2δ ≤ Γ(ν)

K(2πδ)ν
‖η‖σ

2π

δ
‖η‖σ. (2.13)

�e same applies to the third bracket:

H(z + ρ+H(z) + η(z +H(z))−H(z + ρ)

=

∫ 1

0

H ′(z + ρ+ s(H(z) + η(z +H(z))))(H(z) + η(z +H(z))) ds.

We can bound the norm of this term for z ∈ Sσ−4δ using the assumed bounds:

‖H(z + ρ+H(z) + η(z +H(z))−H(z + ρ)‖σ−4δ ≤ (‖H‖σ−δ + ‖η‖σ)‖H ′‖σ−2δ.

We obtain the explicit bound

(‖H‖σ−δ + ‖η‖σ)‖H ′‖σ−2δ ≤
(

Γ(ν)

K(2πδ)ν
‖η‖σ + ‖η‖σ

)
(2π)2Γ(ν)

K(2πδ)ν+1
‖η‖σ

≤ (4π)2Γ(ν)2

K2(2πδ)2ν+1
‖η‖2σ.

(2.14)

For the last term, notice that if z ∈ Sσ−6δ , then z +H(z) + ρ+ η(z +H(z)) ∈ Sσ−4δ and
we may apply Proposition 2.32 to obtain

‖g(z +H(z) + ρ+ η(z +H(z)))‖σ−6δ ≤
(2π)2Γ(ν)2

K2(2πδ)(2ν+1)
‖η‖2σ. (2.15)
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We are le� with �nding a corresponding bound for η̂0. Since f1 and f are conjugate, the
rotation numbers must be equal ρ(f1) = ρ(f) = ρ. We may apply Lemma 2.13 to f1 and
�nd that there must be x0 ∈ [0, 1) such that η1(x0) = 0 and hence f1(x0) = x0 +ρ. Using
this expression in (2.12), we obtain

η̂0 = −[η(x+H(x))− η(x)]

− [H(x+ ρ)−H(x+ ρ+H(x) + η(x+H(x))]

− g(x+H(x) + ρ+ η(x+H(x))).

We have already bounded each of the objects on the right-hand side in (2.13), (2.14) and
(2.15) so that we obtain

|η̂0| ≤
(2π2)Γ(ν)

K(2πδ)ν+1
‖η‖2σ +

(4π)2Γ(ν)2

K2(2πδ)2ν+1
‖η‖2σ +

(2π)2Γ(ν)2

K2(2πδ)(2ν+1)
‖η‖2σ. (2.16)

Combining the four estimates (2.13), (2.14), (2.15) and (2.16), the theorem follows.

Before we come to the technical details of the iteration scheme, this is a good time to
summarise our approach.

1. Linearisation. We want to solve h ◦Rρ = f ◦ h, that is

H ◦Rρ −H = η ◦ h,

where we write h = Id +H . �en we linearise this equation and obtain the approximate
equation

H ◦Rρ −H = η.

2. Solving the linear equation. We solved the linear equation for analytic right-hand
side η and obtained corresponding bounds for H in a smaller strip in Proposition 2.28. In
Proposition 2.29 we showed that we obtained a di�eomorphism.
3. Error term in linearised solution. De�ning f1 = h−1 ◦ f ◦ h, we miss Rρ by an
error which is of the order ‖η‖2σ . In the process, we lose regularity.
4. Fast convergence due to Newton scheme. If we de�ne inductively fn+1 = h−1

n ◦
fn ◦ hn, then the fast convergence of the Newton scheme will allow us to show that the
maps

h0 ◦ h1 ◦ · · · ◦ hn

actually converge to an analytic di�eomorphism of the circle conjugating f to the rotation
Rρ.

Now we are in the position to iterate this scheme. We de�ne

f0(x) = f(x) = Rρ(x) + η(x), η0(x) = η(x). (2.17)

We de�ne h0(x) = h(x) = x+H(x) and

f1(x) = h−1
0 ◦ f0 ◦ h0 = Rρ + η1.

�en we inductively de�ne

fn+1 = h−1
n ◦ fn ◦ hn = Rρ + ηn+1,
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where hn = Id +Hn are constructed as before, i.e. they solve

Hn(x+ ρ)−Hn(x) = ηn(x)− η̂n(0).

De�ne for σ0 = σ and ε0 = ‖η‖σ the inductive constants:

δn =
σ

36(1 + n2)
,

σn+1 = σn − 6δn,

εn = ε
(3/2)n

0

if n ≥ 0. We also de�ne
σ∗ = lim

n→∞
σn >

σ

2
> 0.

We need to make sure that these constants are chosen so that our inductive scheme
works correctly before we may prove the main theorem.

Lemma 2.34. If

‖η‖σ = ε0 <

(
K

16πΓ(ν)

( σ
36

)ν+1
)8

,

then fn+1(x) = x+ ρ+ ηn+1(x) with ηn+1 ∈ Bσn+1
and

‖ηn+1‖σn+1
≤ εn+1.

Furthermore, hn = Id +Hn satis�es

‖Hn‖σn−δn ≤
Γ(ν)εn

K(2πδn)ν
,

and h−1
n = x− hn + gn, where

‖gn‖σn−4δn ≤
(2π)2Γ(ν)2ε2

n

K2(2πδn)(2ν+1)
.

Proof. For n = 0, the estimates for Hn and gn were demonstrated in Propositions 2.28
and 2.32. Proposition 2.33 gives the estimate

‖η1‖σ−6δ ≤
(4π)2Γ(ν)2

K2(2πδ)(2ν+1)
‖η‖2σ < ε

3/2
0

(
K

16πΓ(ν)

( σ
36

)ν+1
)4

(4π)2Γ(ν)2

K2(2πδ)(2ν+1)

≤ ε3/2
0 .

Now suppose the induction holds up to step n − 1 so that we know that ‖ηn‖σn ≤ εn.
�en Propositions 2.28 and 2.32 give the corresponding bounds for Hn and gn, respec-
tively. Again by Proposition 2.33, we �nd

‖ηn+1‖σn+1
≤ (4π)2Γ(ν)2

K2(2πδn)(2ν+1)
ε2
n ≤ ε

3/2
n+1

as before.

Now we can �nally prove Arnold’s theorem.
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Proof of �eorem 2.31. De�ne the change of coordinates via ψ0 = h0 and

ψn = hn ◦ ψn−1 = hn ◦ · · · ◦ h1 ◦ h0.

�en it is

ψn(x) = x+Hn(x) + hn−1(x+Hn(x)) + hn−2(x+Hn(x) + hn−1(x+Hn(x)))

+ · · ·+ h0(x+H1(x+ · · · ) + · · · ).

From Lemma 2.34, we know that ψn is analytic on Sσn−2δn and also

‖ψn − Id ‖σn−2δn ≤
∞∑
k=0

Γ(ν)εk
K(2πδn)ν

=: ∆ <∞.

We need to show that ψn converges to an analytic limit. For this, note that

ψn+1(z)− ψn(z) = ψn ◦ hn+1(z)− ψn(z) = ψn(z +Hn+1(z))− ψn(z)

=

∫ 1

0

ψ′n(z + sHn+1(z))Hn+1(z) ds.

We may use that ψn − Id is bounded, to obtain the bound ‖ψ′n‖σn−4δn ≤ ‖(ψn −
Id)′‖σn−4δn + 1 ≤ 2π∆

δn
+ 1 and hence

‖ψn+1 − ψn‖σn+1 ≤ ‖Hn+1‖σn+1‖ψ′n‖σn+1 ≤
(2π∆

δn
+ 1
) Γ(ν)εn+1

K(2πδn+1)ν
.

�e series
∞∑
n=0

(2π∆

δn
+ 1
) Γ(ν)εn+1

K(2πδn+1)ν
(2.18)

converges since εn is converging exponentially fast. Hence, the sequence (ψn)n is Cauchy
in Bσ∗ and converges there uniformly to a limit h ∈ Bσ8. We may write 8 Note that uniform limits of analytic functions are

analytic.
h(z) = z +H(z)

and �nd that
‖H ′‖σ∗−δ∗ ≤

∆

δ∗
< δ∗ (2.19)

provided δ∗ < min{σ
∗

16 , 1}. But this implies, since δ∗ < 1 that h is invertible on the image
of Sσ∗−δ∗ and that this image contains Sσ∗−2δ∗ . We conclude the proof by noticing that
by induction and using f0 = f together with fn ◦ hn+1 = hn+1 ◦ fn+1 it holds

f ◦ ψn = ψn ◦ fn.

We may use this to obtain

f ◦ h(z) = lim
n→∞

f ◦ ψn(z) = lim
n→∞

ψn ◦ fn(z) = lim
n→∞

ψn(z + ρ+ ηn(z)) = h ◦Rρ(z)

due to the uniform convergence of ψn → h and ηn to zero. �is proves that we have
indeed constructed an analytic di�eomorphism h that conjugates f to the rotation Rρ.
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�e restriction of the theorem to consider only di�eomorphism f(x) = x + ρ + η(x)

with rotation number equal to ρ seems, at �rst glance, to be a restriction. But this is not
the case. In fact, consider a di�eomorphism

f(x) = x+ α+ µ(x)

for µ analytic with ρ(f) = ρ. �en, we can rearrange

f(x) = x+ ρ+
(
α− ρ+ µ(x)

)
(2.20)

and apply �eorem 2.31 to the function η(x) = α− ρ+ µ(x)9. �is leads to the collowing 9 Observe that we made explicit use of this speci�c form
in the proof of Proposition 2.33, when estimating |η̂0|.corollary.

Corollary 2.35. Assume that ρ is of Diophantine type (K, ν) and σ > 0. �en there exists
ε = ε(K, ν, σ) > 0 such that if

f(x) = x+ α+ µ(x)

has rotation number ρ and µ ∈ Bσ satis�es ‖α − ρ + µ‖σ < ε, then f is conjugated to the
rotation Rρ by an analytic change of coordinates.

In practice, the computation of the rotation number is tedious and di�cult work. We
may overcome this problem by introducing another parameter into the system. For η ∈
Bσ for some σ >= 0, ε ∈ R small and α ∈ [0, 1), de�ne

fα,ε(x) = x+ α+ εη(x).

While, we do not know the rotation number, Arnold proved that a slightly changed
di�eomorphism is still analytically conjugate to the rotation, cf. [Arn09, �eorem 2].

�eorem 2.36. Assume that α is of Diophantine type (K, ν) and σ > 0. Assume that
η ∈ Bσ and let

fα,ε(x) = x+ α+ εη(x).

�en there exists ε0 = ε0(K, ν, σ) > 0 and an analytic function ∆(ε) such that

fα,ε,∆(ε)(x) = x+ α+ ∆(ε) + εη(x).

is analytically conjugate to the rotation Rα for every |ε| < ε0. �e change of coordinates also
depends analytically on ε.

Combing �eorem 2.36 with basic measure-theoretical considerations, we obtain the
following result, cf. [Arn09, �eorem 8].

�eorem 2.37. Let η ∈ Bσ and for α ∈ [0, 1] and ε de�ne

fα,ε,∆(ε)(x) = x+ α+ ∆(ε) + εη(x).

�en for every δ > 0 there exists ε0 > 0 such that if |ε| < ε0, there is a set A(ε) ⊂ [0, 1]

such that



30 jonas jansen

1) for every α ∈ A(ε) the di�eomorphism fα,ε is analytically conjugated to a rotation,

2) |A(ε)| > 1− δ.

Finally, we remark on a counterexample due to Yoccoz, cf. [Wal95]. �is shows that
there are irrational rotation numbers for which we can �nd analytic di�eomorphisms of
the circle that are not analytically conjugated to the rotation.

�eorem 2.38. Let a > 3. �ere exists an irrational number α ∈ R \ Q such that the
analytic di�eomorphism10 10 f is called the Blaschke product.

fa,λ(z) = λz2 z + a

1 + az
,

where λ ∈ [0, 1) is the unique number such that ρ(fa,λ) = α, is not analytically conjugate to
the rotation Rα.

�is concludes the discussion of the KAM theory for analytic di�eomorphisms of
the circle. We will use the local methods introduced here to discuss nearly-integrable
Hamiltonian systems in Chapter 3.



3
KAM theory for nearly-integrable Hamiltonian systems

A�er having discussed the very speci�c case of di�eomorphisms on the circle and under-
stood the local (analytic) picture of small perturbations of rotations, we turn to nearly-
integrable Hamiltonian systems. We will see that for a class of so-called integrable Hamil-
tonian system, the motion of the particles is quasi-periodic on invariant tori. A nearly-
integrable system is then a small-perturbation of an integrable system and similarly to the
situation of the circle di�eomorphism, we may ask the question whether the perturbation
changes the dynamics.

Before we can move to the KAM story for Hamiltonians, we begin by giving an intro-
duction into Hamiltonian mechanics. Furthermore, we need to discuss the consequences
of integrabilty and prove the Arnold–Liouville theorem transforming an integrable Hamil-
tonian system into a new set of variables, so-called action-angle variables, for which the
dynamics is trivial.

1 Hamiltonian systems

1.1 Derivation, de�nition and �rst properties

Consider a a particle moving on a curve q : [0, t0] → R3 and de�ne the state space X =

R3. �e motion of the particle is described by Newton’s second law

F = ma,

where F denotes a force vector �eld F : X → X , m denotes the mass of the particle and
a = d2

dt2 q =: q̈ denotes the acceleration. Assuming that forces are conservative1, we may 1 �at means the total work in moving the particle
between two points is independent of the path.write F (q) = −∇V (q) for a potential V . De�ning the kinetic energy2 by
2 Note that dK

dt
= m〈q̇, q̈〉 = 〈q̇, F 〉 has a natural

interpretation as the rate of work equation.K(q̇) =
m

2
|q̇|2,

the Lagrangian is de�ned by

L(q, q̇) = K(q̇)− V (q) =
m

2
‖q̇‖2 − V (q). (3.1)

Hamiltonian’s principle of least action now states that an system will always choose
the path between two points that minimises the action integral

S =

∫ t2

t1

L(q, q̇) dt.
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�e Euler-Lagrange equations of S that hold when δS = 0 are given by
d

dt

∂L
∂q̇
− ∂L
∂q

= 0

and they are equivalent to Newton’s second law.
We also verify that along solutions to the Euler-Lagrange equation, the energy is con-

served, that is dE/dt = 0, where

E =
m

2
|q̇|2 + V (q).

�is is known as the Lagrangian approach to mechanics. It has the advantage to be
based on variation principles, but it requires to have a �xed starting and end point.

Note that we again only consider autonomous systems. In general, L can depend on
time, but we will restrict the discussion on time-independent force �elds.

To obtain Hamiltonian mechanics, we make the change of variables

p =
∂L
∂q̇

= mq̇

and rewrite E as a function of (q, p) via

H(q, p) =
|p|2

2
+ V (q).

�en Newton’s second law is equivalent to

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

which is a �rst-order system on the phase space R3 × R33. 3 Note that for time-dependent Lagrangians, we get the
additional condition

∂

∂t
H = −

∂

∂t
L.

De�nition 3.1. Given a function H = H(q, p) ∈ C1(Rd × Rd), we associate to H the
Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (3.2)

�e space Rd × Rd is called the phase space.

Observe that we can rewrite the Hamiltonian system (3.2) by introducing the (symplec-
tic) matrix

J =

(
0 1d×d

−1d×d 0

)
,

so that (3.2) becomes
d

dt

(
q

p

)
= J∇H(q, p) =: XH(q, p).

So, we can think of Hamiltonian system also to be the �ow with respect to the vector �eld
XH on the space Rd × Rd. We shall explore this symplectic structure more a�er we have
discussed a few simple properties of Hamiltonian systems. Notice that we will restrict
the discussion to Hamiltonian system on linear symplectic spaces (such as Rd × Rd with
the symplectic matric J, or as we will also shortly see, function spaces). In general, one
can study Hamiltonian systems on manifolds that carry a simplectic structure, that is
manifolds that look locally like a symplectic linear space.

We start by showing that H is a constant of motion.
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Proposition 3.2. Given a solution (q, p) to the Hamiltonian system (3.2), it holds

d

dt
H(q, p) = 0.

Proof. It holds

d

dt
H(q(t), p(t)) =

∂H

∂q
(q, p) · q̇ +

∂H

∂p
· ṗ

= −ṗ · q̇ + q̇ · ṗ = 0.

Constants of motion do play an important role in studying Hamiltonian systems. Con-
sider the following example.

Example 3.3. Consider a one-dimensional pendulum of length `. �en q : [0, t0] → R
denotes the displacement of the angle from equilibrium position . Easy trigonometry tells

q

Fig. 3.1: One-dimensional pendulum.

us that the forces acting on the pendulum are given by

F (θ) = −mg sin(q).

Since the acceleration depends on the length, we have a = `q̈, so that we obtain the
equation of motion from Newton’s second law

mq̈ = −mg
`

sin(q).

We easily verify that this is a Hamiltonian system given the Hamiltonian

H(q, p) =
1

2m
|p|2 −mg

`
cos(q).

Proposition 3.2 tells us that solutions lie on level sets of the Hamiltonian. �e level sets of
a Hamiltonian are usually represented in a phase portrait.

q

p

separatrix

p
eriod

ic

rotations

Fig. 3.2: Phase portrait of the Hamiltonian
H(q, p) = 1

2m |p|
2 − mg

` cos(q).

We observe that for small energies, the trajectories in phase space are closed curves:
we obtain periodic motion and the pendulum just swings back and forth. Reaching a
certain critical energy, we see a change in the dynamics. �e trajectory signifying this
change is called separatrix. For higher energies, we see rotations in the phase portrait and
the pendulum swings round and round.

Observe that for two-dimensional phase spaces (that is a system with one-dimensional
Lagrangian state space), this immediately implies that all Hamiltonian systems are in-
tegrable. �e level sets of the Hamiltonian give us exactly the manifolds on which the
motion lies. For higher-dimensional Hamiltonians we need more integrals of motion to
obtain complete integrability, as we will discuss in Section 2.

Exercise. Draw the phase portrait for the simple harmonic oscillator discussed in Exam-
ple 1.2.

We now turn to the symplectic structure of Hamiltonian systems. Recall that we de-
�ned the matrix

J =

(
0 1d×d

−1d×d 0

)
.
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�is matrix gives rise to an anti-symmetric, bilinear form on R2d = Rd × Rd that we
will call

ω(ξ1, ξ2) = ξ1Jξ2 = ξq1 · ξ
p
2 − ξ

p
1 · ξ

q
2 , ξi = (ξqi , ξ

p
i ), i = 1, 2.

De�nition 3.4. A linear map A : R2d → R2d is called symplectic if

AT JA = J, (3.3)

or, equivalently, if ω(Aξ1, Aξ2) = ω(ξ1, ξ2) holds for every ξ1, ξ2 ∈ R2d.

Note that since det(J) = 1, symplectic maps preserve the area:

1 = det(J) = det(AT JA) = det(A)2.

A general nonlinear map is called symplectic if it looks locally like a symplectic linear
map.

De�nition 3.5. Let U ⊂ R2d be an open set and g : U → R2d be C1. �en we call g
symplectic if its Jacobian Dg(q, p) is symplectic for every (q, p) ∈ U , i.e. if

Dg(q, p)T JDg(q, p) = J, (q, p) ∈ U. (3.4)

Liouville observed that will regions in the phase space change their shape under the
�ow of a Hamiltonian system, their volume is conserved. We give a proof using that �ows
of Hamiltonian systems are symplectic.

De�nition 3.6. �e phase �ow of a Hamiltonian system H on Rd × Rd is de�ned by

Φt : Rd × Rd → Rd × Rd : (q0, p0) 7→ (q(t), p(t)),

where (q, p) is the solution to the Hamiltonian system given the Hamiltonian H .

Exercise. Verify that (Φt)t∈R is a group.

Since we are talking about the �ow, it is a good approach to �gure out which vector
�elds generate Hamiltonian system. Note that given a Hamiltonian H , we associated the
vector �eld

XH = J∇H.

�en the Hamiltonian system with Hamiltonian H is the same as the �ow w.r.t. the vector
�eld

d

dt
(p, q) = XH(p, q).

�is explains the following de�nition.

De�nition 3.7. A vector �eld X : R2d → R2d is called Hamiltonian if there is a C1-
Hamiltonian map H : R2d → R such that

X(p, q) = J−1∇H.

We can now give a characterisation of Hamiltonian vector �elds.
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Proposition 3.8. Let X : R2d → R2d be a vector �eld. �en X is a Hamiltonian vector �eld
if and only if DX(q, p) is ω-skew for all (q, p) ∈ R2d, that is

ω(DX(q, p)ξ1, ξ2) = −ω(ξ1, DX(q, p)ξ2), for all ξ1, ξ2 ∈ R2d. (3.5)

Proof. Assume X is a Hamiltonian vector �eld, that is X = J∇H . By de�nition of ω, it
must hold

ω(X(q, p), ξ2) = (∇H(q, p))T JT Jξ2 = −dH(q, p)ξ2

Di�erentiating this relation in direction ξ1, one obtains

ω(DX(q, p)ξ1, ξ2) = −D2H(q, p)(ξ1, ξ2) = ω(DX(q, p)ξ2, ξ1)

by symmetry of D2H(q, p). Hence, DX(q, p) must be ω-skew.
Vice versa, assume that DX(q, p) is ω-skew, then de�ne

H(q, p) =

∫ 1

0

ω(X(t(q, p)), (q, p)) dt+ const.

�en

dH(q, p) · ξ =

∫ 1

0

ω(DX(t(q, p))tξ, (q, p)) + ω(X(t(p, q)), ξ) dt

=

∫ 1

0

tω(DX(t(q, p))(q, p), ξ) + ω(X(t(p, q)), ξ) dt

= ω

(∫ 1

0

d

dt
[tX(t(q, p))] dt, ξ

)
= (X(q, p), ξ)

for all ξ. Hence∇H = J−1X .

�eorem 3.9. Let H be a twice continuously di�erentiable Hamiltonian on R2d. �en, for
each �xed t, Φt is a symplectic map.

Proof. Φt is also the �ow of the vector �eld XH , that is

d

dt
Φt(q, p) = XH(Φt(q, p))

In particular, it holds

d

dt
[DΦt(q, p)ξ] = D

[
d

dt
Φt(q, p)

]
ξ = DXH(Φt(q, p))DΦt(q, p)ξ.

Hence, we obtain
d

dt
ω(DΦt(q, p)ξ1, DΦt(q, p)ξ2) = ω(DXH(q, p)[DΦt(q, p)ξ1], ξ2)

+ ω(ξ1, DXH(q, p)[DΦt(q, p)ξ2])

= 0

since XH is ω-skew by Proposition 3.8. But this implies that

ω(DΦt(q, p)ξ1, DΦt(q, p)ξ2) = ω(DΦ0(q, p)ξ1, DΦ0(q, p)ξ2) = ω(ξ1, ξ2)

for all ξ1, ξ2 ∈ R2d and (q, p) ∈ R2d.
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Corollary 3.10. Let U ⊂ Rd × Rd be an open set in the phase space and H a twice
continuously di�erentiable Hamiltonian. �en

|Φt(U)| = |U |.

Proof. �is follows directly from the observation that since Φt is symplectic, it holds

|detDΦt(q, p)| = 1, (q, p) ∈ R2d.

�e converse to �eorem 3.9 is also true.

�eorem 3.11. Let X : U → R2d be continuously di�erentiable vector �eld and consider the
autonomous ordinary di�erential equation

ẏ = X(y)

and its �ow Φt. �en the system ẏ = X(y) is locally Hamiltonian, that is for each point
in space-time (t0, q0, p0), there is a neighborhood (t0, q0, p0) ∈ V in space-time and a
Hamiltonian H such that the �ow agrees with the �ow of the Hamiltonian system given H if
and only if Φt is symplectic for all su�ciently small t.

Now that we have seen some �rst important properties of Hamiltonian systems, we
turn to study examples and generalise the notions we have introduced. We start with a
guiding example for the next part of the course, the n-body problem.

Example 3.12 (�e n-body problem). Consider n particles moving in an inertial system
with positions qi : R → R3, i = 1, . . . , n and masses mi, and assume that the only force
acting on the motion is mutual gravitational a�raction. Newton’s law of gravity says that
the magnitude of force on the i-th particle coming from particle j is proportional to the
product of their masses and inversely proportional to the square of their distance.

�at is, by Newton’s second law we obtain the system of ODEs given by

miq̈i =
∑
j 6=i

gmimj(qi − qj)
|qi − qj |3

=
∂U

∂qi
, (3.6)

where the potential U is given by

U(q1, . . . , qn) =
∑

1≤i<j≤n

gmimj

|qi − qj |
.

�en (3.6) is a Hamiltonian system on the phase space R3n × R3n given the Hamiltonian

H(q1, . . . , qn, p1, . . . , pn) =

n∑
i=1

|pi|2

2mi
− U(q1, . . . , qn).

�is problem consists of 6n equations and even for n = 3 solving these would require a
large number of integrals. As we will discuss later, we expect resonating solutions for the
three-body problem.
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�e situation for n = 2 is much be�er, though.

Example 3.13 (�e 2-body problem). Consider the following change of coordinates4 4 We will discuss the general theory on changes of
coordinates that keep the Hamiltonian structure of the
system later.q̄ = µ1q1 + µ2q2, p = p1 + p2, u = q2 − q1, v = −ν2p1 + ν1p2.

Here,

ν1 =
m1

m1 +m2
, ν2 =

m2

m1 +m2
, ν = m1 +m2, M =

m1m2

m1 +m2
.

�ere is a natural interpretation for this change of coordinates: q̄ is the center of mass, p
is the total momentum, u is the relative position. In the new coordinates, the Hamiltonian
takes the form

H(q̄, u, p, v) =
|p|2

2ν
+
|v|2

2M
− m1m2

|u|
.

We can now determine the new equations of motions and obtain

˙̄q =
∂H

∂p
=
p

ν
, ṗ = −∂H

∂q̄
= 0,

u̇ =
∂H

∂v
=

v

M
, v̇ = −∂H

∂u
= −m1m2u

|u|3

�is proves that the combined linear momentum p is an integral5 of the dynamical system 5 Such a coordinate is also called cyclic.

and hence constant and the center of mass q̄ moves on a straight line given the total
momentum p. Hence, the system reduces to an equation for (u, v) of the form

ü =
gνu

|u|3
.

�is is a central-force problem, also known as the Kepler problem.

Exercise. Solve the Kepler problem.

1.2 Poisson brackets

Consider a function f : Rd × Rd → R de�ned on the phase space. �en, if (q, p) is the
�ow of a Hamiltonian system with Hamiltonian H , it holds

d

dt
f(q(t), p(t)) =

∂f

∂q
(q(t), p(t)) · q̇(t) +

∂f

∂p
(q(t), p(t)) · ṗ(t)

=
∂f

∂q
(q(t), p(t)) · ∂H

∂p
(q(t), p(t))− ∂f

∂p
(q(t), p(t)) · ∂H

∂q
(q(t), p(t)).

�is motivates the following de�nition.

De�nition 3.14 (Poisson bracket). Let f, g : Rd × Rd → R be di�erentiable functions.
�en we de�ne the Poisson bracket via

{f, g} =

d∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
= ∇f · J∇g.

�e following properties follow immediately from the de�nition.
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Lemma 3.15. Let f, g, h : Rd × Rd → R be di�erentiable functions

1) Bilinearity:
{α1f + α2g, h} = α1{f, h}+ α2{g, h}

and likewise for the second component;

2) Anti-commutativity:
{f, g} = −{g, f}.

In particular, {f, f} = 0;

3) Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

4) Product identity:
{fg, h} = f{g, h}+ g{f, h}.

Example 3.16. �e canonical coordinates q = (q1, . . . , qd), p = (p1, . . . , pd) satisfy the
following relations for their Poisson brackets6 6 Notice the similarity to quantum mechanics for the

commutation relations of the position and momentum
operator. �is is not a coincidence.{qi, qj} = 0,

{pi, pj} = 0,

{qi, pj} = δij .

Example 3.17. We can rewrite the Hamiltonian equations as

q̇ = {q,H},
ṗ = {p,H}.

Corollary 3.18. Let f : Rd × Rd → R and (q, p) = (q(t), p(t)) the �ow of a Hamiltonian
system with Hamiltonian H , then

d

dt
f(q, p) = {f,H}(q, p).

In particular, f is a constant of motion if and only if We say that two functions f and g are in involution if

{f, g} = 0.{f,H} = 0.

Lemma 3.19. Let f, g : Rd × Rd → R and (q(t), p(t)) the �ow of a Hamiltonian system
with Hamiltonian H , then

d

dt
{f(q, p), g(q, p)} =

{
d

dt
f(q, p), g(q, p)

}
+

{
f(q, p),

d

dt
g(q, p)

}
.

In particular, the Poisson bracket of two constants of motion is again a constant of motion.

Exercise. Let d = 3 and de�ne L = q × p the usual cross product. Compute

{Li, Lj}, i, j = 1, 2, 3.

Conclude that if two components of the angular momentum are constants of motion, then
so must be the third.
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1.3 Canonical transformations and generating functions

Classically, physical systems are independent of the change of observer, that is we can
change our coordinate system. In Lagrangian dynamic, where the fundamental object
is the evolution of our particle q, we can �nd a change of variables Q = F (q) by any
di�eomorphism F and rewrite the Lagrangian.

In Hamiltonian dynamics, we are working on the phase space Rd × Rd and our cor-
responding ODE consists of 2d-components. �is gives us more �exibility in that we can
�nd changes of variables that mix q and p. But not every possible change of coordinates
will keep the Hamiltonian structure.

De�ne a general change of coordinates by

(Q,P ) : Rd × Rd → Rd × Rd : (q, p) 7→ (Q(q, p), P (q, p))

and denote its Jacobian D(P,Q) = J . �en, we have

d

dt
Qi(q, p) = {Qi, H}(q, p) = ∇QiJ∇(q,p)H(q, p) = ∇Qi · J(D(Q,P ))T∇(Q,P )H,

d

dt
Pi(q, p) = {Pi, H}(q, p) = ∇PiJ∇(q,p)H(q, p) = ∇Pi · J(D(Q,P ))T∇(Q,P )H.

In total, this demonstrates

d

dt
(Q,P ) = D(Q,P )J(D(Q,P ))T∇(Q,P )H

and the Hamiltonian structure is invariant if and only if the change of coordinates is
symplectic

(D(Q,P ))JD(Q,P )T = J.

De�nition 3.20. A change of coordinates (q, p) 7→ (Q,P ) with Jacobian J = D(Q,P ) is
called a canonical transformation if

J JJ T = J.

Proposition 3.21. �e Poisson bracket is invariant under canonical transformations. Con-
versely, any transformation (q, p) 7→ (Q,P ) which preserves the Poisson bracket so that

{Qi, Qj} = {Pi, Pj} = 0 and {Qi, Pj} = δij

is canonical.

Proof. Let f, g : Rd × Rd → R two di�erentiable functions and denote by J = D(Q,P )

the Jacobian of the canonical transformation. Denote by y = (q, p) and Y = (Q,P )

∂f

∂yi
=

2d∑
j=1

∂f

∂Yj
Jji.
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Hence,

{f, g} = ∇(q,p)f · J∇(q,p)g =

2d∑
i,k=1

∂f

∂yi
Jik

∂g

∂yk

=

2d∑
i,j,k,l=1

∂f

∂Yj
JjiJikJlk

∂f

∂Yl

=

2d∑
j,l=1

∂f

∂Yj
Jjl

∂f

∂Yl
.

For the converse, note that for a general transformation, we have

J =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
.

But then, we can compute

J JJ T =

(
{Qi, Qj} {Qi, Pj}
{Pi, Qj} {Pi, Pj}

)
.

So whenever the canonical Poisson bracket relations are satis�ed, the transformation is
canonical.

In certain situations, there is a simple method of constructing a canonical transforma-
tion between the coordinates (q, p) and (Q,P ). Assume we are given a function F (q, P )

depending on the old positions and new momenta7 such that 7 �is might look very strange at �rst sight, but it will
come in very useful in the next section.

det

(
∂2F

∂qi∂Pj

)
ij

6= 0.

�en we may construct a canonical transformation via

pi =
∂F

∂qi
and Qi =

∂F

∂Pi
.

De�nition 3.22. �e function F is called the generating function of the canonical trans-
formation.

Proposition 3.23. �e change of coordinates given by a generating function F = F (q, P )

with

det

(
∂2F

∂qi∂Pj

)
ij

6= 0

de�ned by

pi =
∂F

∂qi
and Qi =

∂F

∂Pi
.

is a canonical transformation.

Proof. By Proposition 3.21 it is enough to study the Poisson brackets. Note that

∂p

∂P
=

∂2F

∂q∂P
=
∂Q

∂q
.
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Inserting this into the Poisson brackets gives us the canonical relations: it is

{Qi, Pj}i,j =
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

=
∂Q

∂q

∂P

∂p

=
∂2F

∂q∂p

(
∂2F

∂q∂P

)−1

= Id .

�is proves the claim.

2 Integrability and the Arnold–Liouville theorem

In this next section, we will de�ne the notion of complete integrability for Hamiltonian.
For this special class of Hamiltonian systems, we will construct a canonical transforma-
tion which makes the dynamics very easy to understand. �is is known as the Arnold-
Liouville theorem.

2.1 Complete integrability

Recall that we have seen that we can always �nd at least one integral of motion, that is
the Hamiltonian H itself.

De�nition 3.24 (Completely integrable Hamiltonian system). A Hamiltonian system
with Hamiltonian H : Rd × Rd → R is (completely) integrable if it possesses d integrals of
motion f1 = H, f2, . . . , fd so that

(a) these integrals of motion are functionally independent, that is ∇f1, . . . ,∇fd are
linearly indendent on a dense, open subset of Rd × Rd,

(b) they are pairwise in involution with respect to the Poisson bracket, i.e.

{fi, fj} = 0, for all i, j ∈ {1, . . . , d},

(c) the vector �elds Xfi = J∇fi are complete8. 8 A vector �eld is called complete if it generates a global
�ow.

Example 3.25. Let d = 1. Hamiltonian systems with Hamiltonian H : R×R→ R so that
∇H(q, p) 6= 0 on an open, dense subset are completely integrable with the choice I1 = H .

2.2 Interlude: Lie group actions, and Noether’s theorem

Before studying integrable Hamiltonian systems in more detail, we go back to the two-
body problem and show that it is integrable.

Recall the following de�nition.

De�nition 3.26 (Lie group and associated Lie algebra).
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1) A Lie group is a �nite-dimensional smooth manifold G that carries a group structure
for which the product map G × G → G : (g, h) 7→ g · h and the inverse map
G→ G : g 7→ g−1 are smooth.

2) Given a Lie group G, we associate the Lie algebra9 9 Recall that an algebra is called a Lie algebra if it carries
a bilinear, anti-commutative form that satis�es the Jacobi
identity, cf. Lemma 3.15.g = TeG,

where e denotes the neutral element of the Lie group G.

Example 3.27.

(1) �e group of symplectic matrices Sp(d) is a Lie group with Lie algebra sp(d).

(2) �e group of orientation-preserving linear isometries SO(d) is a Lie group with Lie
algebra so(d).

Proposition 3.28. For each element ξ ∈ g of the Lie algebra g of a Lie group G, there exists
a unique function fξ : R→ G such that

fξ(s+ t) = fξ(s)fξ(t), for all s, t ∈ R

and such that
f ′ξ(0) = ξ.

fξ is called exponential and we denote fξ(t) = exp(tξ).10 10 For a general Lie group G, we can de�ne the map fξ as
the �ow of the vector �eld

Xξ(g) = dLg(e)(ξ) ∈ TgG,

where Lg(h) = g · h is the le� multiplication.

Example 3.29. In the case G = Sp(d) or G = SO(d), it holds exp(tξ) is the usual matrix
exponential.

De�nition 3.30 (Actions of Lie groups).

1) An action of a Lie group on a manifold M is a group homomorphism ψ : G →
Diff(M). We usually denote g.m = ψ(g)(m).

2) If M = Rd × Rd, we say that the action is symplectic if ψ(g) is symplectic for every
g ∈ G.

As we can see, the Lie groups11 from the example act on the phase space. When the Lie 11 In our case of Hamiltonian systems on linear spaces,
strictly speaking we don’t need to use the terminology
of Lie groups. We introduce the technology here anyway
to help the reader generalise the notions to the case of
symplectic manifolds. �is will also be useful later.

group acts by symplectomorphisms, they keep the Hamiltonian structure of the �ow.

De�nition 3.31. Let ψ be a Lie group action on R2d. We de�ne the map Ψ: g →
C∞(R2d;R2d) by

Ψ(ξ)(x) =
d

dt
ψ(exp(tξ), x)

for every f ∈ C∞(Rd × Rd).

De�nition 3.32 (Hamiltonian action). We call a symplectic action Hamiltonian if Ψ(ξ)

is a Hamiltonian vector �eld for each ξ ∈ g. 12 We de�ne the co-moment map Φ: g → 12 �is de�nition is not without subleties. For once,
we could have also de�ned a Hamiltonian action to
be a group action of a Lie group G by Hamiltonian
symplectomorphisms, that is by symplectomorphisms
given by the �ow w.r.t. a family of smooth Hamiltonians.
In fact, if the �rst deRham-cohomology vanishes,
and this is the case for our linear space, then there
is no di�erence between an action of a Lie group by
symplectomorphisms and a Hamiltonian action. �is
general fact from symplectic geometry is beyond the
scope of this lecture.

C∞(M) so that Ψ(ξ) = JXΦ(ξ).

De�nition 3.33. A Lie group G is a symmetry group of a Hamiltonian system if there
exists a Hamiltonian action ψ such that H ◦ ψ(g) = H for every g ∈ G.
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Example 3.34. For V : [0,∞)→ R consider the Hamiltonian

H(q, p) =
1

2
|p|2 − V (|q|).

�en SO(3) is a symmetry group for the Hamiltonian system via the induced Hamilto-
nian action on Rd × Rd by acting on the �rst coordinate.

�eorem 3.35 (Noether’s theorem). If G is a symmetry group of a Hamiltonian system and
Φ: g → C∞(Rd × Rd) is its co-moment map, then for every ξ ∈ g the function Φ(ξ) is an
integral of motion.

Corollary 3.36. Any Hamiltonian system of the form H(q, p) = p2

2 + V (|q|) with a central
force �eld is completely integrable. In particular, the Kepler problem, cf. Example 3.13, is
completely integrable.

Proof. Note that dim so(3) = 3. Consider a basis ξ1, ξ2, ξ3 of so(3). �en Φ(ξ1), Φ(ξ2)

and Φ(ξ3) are integrals of motion. Note that since (R3,×) and so(3) are isomorphic, we
can identify Φ(ξi) with the angular momentum Li.

�eorem 3.37. If d = 3, then any Hamiltonian system of the form H(q, p) = |p|2
2 +

V (|q|) with a central force �eld is completely integrable. In particular, the Kepler problem, cf.
Example 3.13, is completely integrable.

Proof. Consider L = q × p. We have already seen that the canonical Poisson relations are
given by {Li, Lj} = εijkLk . Note that from Corollary 3.36 we conclude that {Li, H} = 0.
Furthermore, observe that

{L2
1 + L2

2 + L2
3, H} = 0.

Now, we can see that the three constants of motion H , L1 and L2
1 +L2

2 +L2
3 are function-

ally independent to conlude the proof.

�ere are a few more known examples of completely integrable systems.

Example 3.38.

(1) �e harmonic oscillator

H(q, p) =
i = 1

d

p2
i

2
+
ωiq

2
i

2

is completely integrable.

(2) �e planar movement of a body under gravitational a�raction of two �xed central
bodies

H(q, p) =
1

2
(p2

1 + p2
2)− m1

r1
− m2

r2
,

where r1 and r2 are the distance of the moving body from the two central bodies

r1 =
√

(q1 + c)2 + q2
2 , r2 =

√
(q1 − c)2 + q2

2 (3.7)

(3) Certain spinning tops, such as the Euler, Lagrange and Kovalevskaya spinning top
are integrable, see [Aud99].
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2.3 The Arnold-Liouville theorem

De�nition 3.39 (Lagrangian submanifold). A submanifold M of Rd × Rd with the
symplectic form ω is called Lagrangian of ω|M ≡ 0 and M is maximal with this property.

Remark 3.40. Note that Lagrangian submanifolds have dimension d.

�eorem 3.41 (Arnold–Liouville theorem). Consider a completely integrable Hamiltonian
system f = (f1, . . . , fd) with Hamiltonian H = f1. For c ∈ Rd de�ne the level surface13 13 Note that we know that solutions of the Hamiltonian

system stay on Mc.
Mc = {(q, p) ∈ Rd × Rd : f(q, p) = c}.

Assume that c is a regular value for f . �en

1) If Mc is compact and connected, then it is a Lagrangian submanifold which is di�eo-
morphic to the torus Td = S1 × . . .× S1.

2) �ere are coordinates θ = (θ1, . . . , θd) on this torus such that the dynamics of the
Hamiltonian system are given by

θ̇i = ωi(I1, . . . , Id), i = 1, . . . , d.

3) In a neighborhood of this torus in Rd × Rd one can introduce action-angle coordinates
(θ, I) such that the angles (θ1, . . . , θd) form a coordinate system for Mc and the actions
(I1, . . . , Id) are �rst integrals.

4) �e change of coordinates (q, p) 7→ (θ, I) is canonical and in the new coordinates, the
dynamic is given by

θ̇i = ωi(I1, . . . , Id), i = 1, . . . , d,

İi = 0, i = 1, . . . , d.

�e proof is lengthy and not without technicalities. We split the proof into two parts.

2.4 The geometry ofMc and angle variables

For the �rst part of the proof, we need some algebra.

Lemma 3.42. Let {0} 6= Γ ⊂ Rd be a discrete additive subgroup. �en there exists
1 ≤ m ≤ d and m linear independent vectors v1, . . . , vm ∈ Rd such that

Γ =

m⊕
k=1

Zvk.

�e following result is a generalisation of the orbit-stabiliser theorem for actions of
groups on a set to the situation of the action of a Lie group on a manifold, see e.g. [BD95,
Prop. 4.6].

Proposition 3.43 (Orbit-stabiliser theorem for Lie groups). Let M be a manifold equipped
with a smooth and transitive action of a Lie group G. Denote for m ∈M the stabiliser

Stab(m) = {g ∈ G : g.m = m}.

�en the spaces M and G/Stab(m) are di�eomorphic.
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And we also need some di�erential geometry. By the inverse function theorem and
from the condition that the functions f1, . . . , fd are functionally independent, we may
already conclude that for any regular value c ∈ Rd for f , the space Mc is a manifold.
Since Xf1 , . . . , Xfd forms a basis of the tangent space, this manifold is d-dimensional.

Lemma 3.44. De�ne Xi := Xfi = J∇f . �en the Xi are vector �elds on M such that
[Xi, Yj ] = 0 for all i, j = 1, . . . , d.

�eorem 3.45. Let M be a manifold and X,Y : M → TM vector �elds with �ows ΦXt
and ΦYt . �en [X,Y ] = 0 if and only if their �ows commute, that is

ΦXt ◦ ΦYs = ΦYs ◦ ΦXt for all t, s.

We split the proof of �eorem 3.41 into two parts. First, we show that, for any regular
value c of f , Mc is di�eomorphic to Tk × Rd−k .

Proposition 3.46. Let M be an d-dimensional equipped with d linearly independent,
complete vector �elds X1, . . . , Xd so that

[Xi, Xj ] := Xi ◦Xj −Xj ◦Xi = 0.

�en there exists k ∈ {0, . . . , d} and a di�eomorphism

M ∼= Tk × Rd−k. (3.8)

Proof. Denote by Φkt the �ow of the vector �eld Xk . Since [Xi, Xj ] = 0, �eorem 3.45
implies that the �ows commute. �is allows us to de�ne a transitive action of Rd on M in
the following way:

ψ : Rd ×M →M : ((t1, . . . , td),m) 7→ Φ1
t1 ◦ · · · ◦ Φdtd(m).

Now, �x m0 ∈M and de�ne

Γ = {t ∈ Rd : ψ(t,m0) = m0} = Stab(m0).

Observe that since the vector �elds are complete and span the tangent space at every
point, this gives a transitive action. �en by Proposition 3.43, we already know that M ∼=
Rd/Γ. It remains to prove that Γ is discrete and does not depend on the choice of m0.

Let m1 ∈ M be another point. Since the action is transitive, there is r ∈ Rd such
that ψ(r,m0) = m1. Let t ∈ Γ, then ψ(t,m1) = ψ(t, ψ(r,m0)) = ψ(r + t,m0) =

ψ(r, ψ(t,m0)) = m1.
To show that the subgroup is discrete, notice that the map ψm0

= ψ(·,m0) : Rd → M

is, by construction, a local chart of M at m0, that is there are neighborhoods 0 ∈ V ⊂ Rd

and m0 ∈ U ⊂ M so that ψm0
: V → U is a di�eomorphism. But since ψm0

(0) = m0,
this means that t = 0 is the only element in Γ∩ V . Arguing in the same way for any other
t ∈ Γ shows that Γ is discrete.

Now using Lemma 3.42 we may conclude that Γ ∼= Zk for some 0 ≤ k ≤ d. A�er li�ing
this isomorphism to an isormophism of Rd, we may conclude that Rd/Γ ∼= Rd/Zk ∼=
Tk × Rn−k , hence concluding the proof.



46 jonas jansen

We have actually already constructed the angle variables. �erefore, observe that we
have constructed a commutative diagram

Rd Rd

Tk × Rd−k Mc

A : (φ,y)7→(t1,...,td)

p : (φ,y)7→(φ mod Z,y) (t1,...,td) 7→ψ(t,m0)

Ã

We can use this commutative diagram to see that we have constructed the angle coor-
dinates.

Corollary 3.47. If Mc is compact and connected, then is is di�eomorphic to the torus Td.
Furthermore, on the torus there are coordinates θ1, . . . , θd such that the phase �ow of the
Hamiltonian H = f1 is a periodic motion in these coordinates, that is

θ̇ = ω(f).

Proof. By Proposition 3.46, we have already seen that Mc
∼= Tk × Rd−k . But if Mc is

compact, then k = d and Mc
∼= Td. Now consider the �ow of the Hamiltonian Φ1

t and let
x ∈Mc. Since ψ(·,m0) is surjective, there is r ∈ Rd such that ψ(r,m0) = x. Hence,

Φ1
t (x) = ψ(te1, x) = ψ(te1 + r,m0) = ψ ◦A(tA−1e1 +A−1r,m0)

= Ã ◦ p(tA−1e1 +A−1r).

Hence, under the �ow of A the coordinates θ = (θ1, . . . , θd) satisfy θ(t) = ωt+ θ(0) with
ω = A−1e1 and θ(0) = A−1r. �is concludes the proof.

2.5 The action variables

In the previous subsection, we have seen that Mc
∼= Td and the dynamics of the Hamilto-

nian system on the torus is conditionally periodic. In order to obtain a global understand-
ing of the integrable Hamiltonian system, we want to understand the dynamics on all tori
simultaneously. �erefore, note that for each value c, at least as long as Mc remains com-
pact, we obtain that Mc looks like a torus. Stated di�erently, the phase space is foliated by
tori.

Indeed, a neighborhood of Mc in phase space14 topologically looks like a product of 14 Note that the set of regular points is open.

Td and an open ball in Rd. Considering the vector f = (f1, . . . , fd) of our integrals, the
dynamics in this neighborhood are very simple

d

dt
f = 0,

d

dt
θ = ω(f).

Unfortunately, the change of coordinates (q, p) 7→ (θ, f) is not canonical. In order to
remedy this problem, we need to rede�ne the integrals. We start by discussing this in the
case of d = 1 and f1 = H .

Example 3.48 (Action coordinates in d = 1). Consider the Hamiltonian given by

H(q, p) =
p2

2
+ V (q).
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Recall that since H is a constant of motion and ∇H 6= 0 if (p, q) 6= 0, these Hamiltonian
systems are always integrable, so the manifold Mc is given by the level sets of the Hamil-
tonian. �ese level sets look like tori in phase space and are parametrised by θ. In order to
�nd the correct choice for I , we will look for a canonical transformation (q, p) 7→ (θ, I),
where in a neighborhood of Mc, we have

I = I(c),

∫
Mc

dθ = 2π.

In order to construct the canonical transformation, we look for a generating functoin
F (q, I). �en, we need

p =
∂F

∂q
, θ =

∂F

∂I
, H

(
q,
∂F

∂q

)
= H̃(I).

Locally around Mc, we may write p as a function of q and c

p = p(q, c) =
√

2(c− V (q)).

�en the �rst condition for our generating function motivates

F (q, I) =
1

2π

∫
[x0,x]

p(q, c) dq

where, for �xed x0 ∈Mc = Mh(I) [x0, x] is a curve connecting x0 and x on Mc and

I = I(c) =
1

2π

∫
γc

p(q, c) dq,

where γc is one cycle in T × {c}. Since we know that p = q̇, we also �nd if the orbit has
period ω that

2π

ω
=

∫
γc

dt

=

∫
γc

1

p(q, c)
dq

=

∫
γc

d

dc

√
2(c− V (q)) dq

=
d

dc

∫
γc

√
2(c− V (q)) dq.

�is last step needs explanation since γc also depends on c. But if we change c to c + ∆c,
then we get a term of lower order since both the region of integration changes by order
∆c and the integrand changes. In total, we �nd

2π

ω
= 2π

dI

dc
.

Next, note that we may then invert the relationship between I and c and write c = c(I).
�is gives us the de�nition

F (q, I) =

∫
[q0,q]

p(q, c(I)) dq,
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where [q0, q] is a segment on Mc = Mc(I). Note that we get

∂F

∂q
= p

for free. To determine ∂F
∂I , observe that a�er one full cycle, we land in γc + [q0, q] and �nd

F (q, I) =

∫
γc+[q0,q]

p(q, c) dq = 2πI + F (q, I),

so the function F is multi-valued which corresponds to θ being an angle. But now, this
gives

∂F

∂I
= θ.

Finally, since the de�nition of I only depends on c, this also proves that İ = 0. �is
concludes the construction.

Exercise. Find S and I for the harmonic oscillator.

Now, we may generalise this construction to higher-dimensional integrable Hamilto-
nian systems in the following way. Assume that we have

det

(
∂f

∂pj

)
6= 0. (3.9)

Since Mc
∼= Td, let γ1, . . . , γd denote the cycles, i.e. in the coordinates on Td, we have

e.g. γj = {0}j−1 × S1 × {0}d−j .

De�nition 3.49. Consider an integrable Hamiltonian system on Rd with corresponding
integrals f1, . . . , fd. For j = 1, . . . , d, the numbers

Ij = Ij(f1, . . . , fd) =
1

2π

∫
γj

p(q, c) dq

are called action variables.

We need to show that the de�nitions are independent of the exact parametrisation of
the torus.

Lemma 3.50. Let γ̃j denote any other cycle in direction θj of the torus and denote

Ĩj =
1

2π

∫
γ̃j

p(q, c) · dq.

�en Ij = Ĩj .

Proof. Observe that since on Mc it holds fi(q, p(q, c)) = ci, we may di�erentiate by qk
and obtain

∂fi
∂qk

+

d∑
l=1

∂fi
∂pl

∂pl
∂qk

= 0.
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Using that fi and fj are in involution, we obtain

0 = {fi, fj}

=

d∑
k=1

(
∂fi
∂qk

∂fj
∂pk
− ∂fi
∂pk

∂fj
∂qk

)

=

d∑
k,l=1

[(
−∂fi
∂pl

∂pl
∂qk

)
∂fj
∂pk
− ∂fi
∂pk

(
−∂fj
∂pl

∂pl
∂qk

)]

=

d∑
k,l=1

[(
− ∂fi
∂pk

∂pk
∂ql

)
∂fj
∂pl
− ∂fi
∂pk

(
−∂fj
∂pl

∂pl
∂qk

)]

=

d∑
j,l=1

∂fi
∂pk

(
∂pl
∂qk
− ∂pk
∂ql

)
∂fj
∂pl

.

Using (3.9) again, this implies that

∂pl
∂qk
− ∂pk
∂ql

= 0.

First assume now that w.l.o.g.15 j = 1 and γj = S1×{0}d−1 and γ̃ = S1×{α}×{0}d−2. 15 For the general case, just iterate this argument.

Now de�ne A the area enclosed by the curves γ1 and γ̃1. �en by Green’s theorem

I1 − Ĩ1 =

∫
γ1

p(q, c) · dq −
∫
γ̃1

p(q, c) · dq

=

∫
∂A

p1 dq1 + p2 dq2

=

∫
A

∂p1

∂q2
− ∂p2

∂q1
dq1 dq2

= 0.

�is proves the claim.

Now we are in the position to complete the complete proof of the Arnold-Liouville
theorem.

Proof of �eorem 3.41. Step 1. We have seen in Corollary 3.47 that if Mc is compact, then
it is di�eomorphic to the torus Td. Since Mc is d-dimensional and in order to prove that
Mc is a Lagrangian submanifold, it su�ces to prove that ω vanishes on TmMc for every
m ∈ Mc. But observe that the tangent space is spanned by the vector �elds X1, . . . , Xd

and they satisfy
ω(Xi(m), Xj(m)) = XfiJXfj = 0.

Step 2. We have constructed the angular variables in Corollary 3.47.
Step 3. Since the action variables are only dependent on c and the dynamics takes place
on the manifold Mc, we have İ = 0.
Step 4. We again need to check that the generating function

F (q, I) =

∫
[q0,q]

p(q, c) · dq
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satis�es
∂F

∂qi
= pi,

∂F

∂Ii
= θi andH

(
q,
∂F

∂qi

)
= H̃(I).

�e �rst claim follows immediately from the de�nition and the third claim from Step 3.
�e second claim follows as in Example 3.48.

Remark 3.51. In general, the manifold Mc ceases to exist for critical values of f . �ese
critical values correspond to separatrices which separate phase space into di�erent parts
in which the dynamics might look slightly di�erent. Compare this to the one-dimensional
pendulum, where the separatrix divides the phase space into a part of oscillations and
rotations, cf. Example 3.3.

�e Arnold-Liouville theorem provides us with a complete understanding of the dy-
namics of integrable systems. From the initial condition, we determine I = I0 and a
corresponding torus on which the dynamics is conditionally periodic.

De�nition 3.52. Let Td be the d-dimensional torus and θ = (θ1, . . . , θd) mod 2π angular
coordinates and ω = (ω1, . . . , ωd) ∈ [0, 2π)d. By a conditionally periodic motion we mean
solutions to the di�erential equations

θ̇ = ω.

ω1, . . . , ωd are called the frequencies of the conditionally periodic motioin. �e frequen-
cies are called independent if they are linearly independent over Q.

Solutions to conditionally periodic motions are lines

θ(t) = θ0 + ωt

and these trajectories are called a winding of the torus.

�eorem 3.53. If the frequencies are independent, then every trajectory is dense on the torus
Td.

Proof. �e proof relies on ergodicity of the dynamical system. If we can prove that for
any continuous function f on Td and any initial condition θ0 it holds

lim
T→∞

1

T

∫ T

0

f(θ0 + ωt) dt =
1

(2π)d

∫
Td
f(θ) dθ, (3.10)

then the theorem follows. Indeed, assume that there is a trajectory which is not dense.
�en there is an open set U so that θ0 + ωt /∈ U for every t ≥ 0. But then, de�ne a func-
tion f with spatial average equal to one and f = 0 outside of U to obtain a contradiction.

To prove (3.10), we approximate continuous functions by trigonometric polynomials

P (θ) =
∑
k∈Zd

ake
ik·θ,

where only �nitely many ak 6= 0. �en, for k ∈ Zd \ {0} and f(ϕ) = eik·ϕ, we may
compute

1

T

∫ T

0

f(θ0 + ωt) dt =
1

T

∫ T

0

eik·θ0+k·ωt dt =
eik·θ0

ik · ω
eik·ωT − 1

T
−→ 0
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as t→∞ and ∫
Td
eik·θ dθ = 0.

�e case k = 0 follows immediately and the case of trigonometric polynomials follows
from linearity of both sides. Approximating a continuous function by trigonometric poly-
nomials gives us (3.10).

3 KAM theory

4 The n-body problem and the solar system

5 Additional remarks and literature
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