Short-time existence and standard parabolic theory
1. Ouverture / Reminder
. in compress ible,
Viscous,
Newtonian fluid
. homogeneous in y-direction
Lubrication approximation: asymptotic model for
Vanishing aspect ratio
$$\varepsilon = \frac{H}{L} \longrightarrow 0$$

start from Navier-Stokes system $\bar{u} = (u,v)$
 $\left(\begin{array}{c} Re\left(\partial_{\xi}\bar{u} + (\bar{u}\cdot\nabla)\bar{u}\right) = -\nabla T + \Delta \bar{u} \\ div \bar{u} = 0 \end{array} \right) = 0$ on $z=0$ slip condition
 $\partial_{z}h + u \partial_{z}h = 0$ on $z=h$ kine make bc.
 $Z(\bar{u},T)n = 0 = Kn$ on $z=h$ stress-balance

asymptotic expansion in
$$\mathcal{E} = \frac{\mu}{L}$$
 and $\mathcal{E} \rightarrow O$
 $\partial_{\mathcal{E}}h + \partial_{X}(\frac{\sigma}{3}h^{3}\partial_{X}^{3}h) = O$ on $\{h>0\}$
More generally, we get
 $\partial_{t}h + \partial_{x}(h^{n}\partial_{x}^{3}h) = O$ in $\{h>0\}$ n>1
 $\frac{\text{Teatures}}{\frac{1}{2}}$. fourth-order equation
 $\rightarrow nO$ comparison principle (cf $\partial_{e}u_{1}\partial_{x}^{u} = O$)
 \downarrow_{S} solutions that are initially positive $\rightarrow see$ Talk 04
might not stay positive
 $\partial_{L}h + h^{n}\partial_{x}^{u}h = -(\partial_{x}h^{n})\partial_{x}^{3}h$
 $\cdot \text{ degenerale - parabolicity ceases as $h \rightarrow O$$

Remark: Porous medium equation
• Adding + g ez in Navier-Stoke system and
essuming g>>0
~> ∂_eh-∂_k(h^o∂_kh) =0
Thin-film equation on bounded domains SZ = (a, b) ⊂ R
-> need two boundary conditions for closed system
1. Contact angle:
surface tension equilibrium fixes
contact angle:

$$d_{k}h = 0$$
 on ∂SZ
2. No-flux condition through boundary:
 $O = \frac{d}{dt} \int_{x} h(t_{i}x) dx = \int_{x} \partial_{x} h(t_{i}x) dx = -\int_{x} \partial_{x}(h^{o}\partial_{x}^{3}h) dx = -\int_{x} h^{o}\partial_{x}^{3}h dH^{o}$
 $h^{o}\partial_{x}^{3}h = 0$ on ∂SZ

$$\begin{cases} \partial_{\xi} h + \partial_{x} (h^{n} \partial_{x}^{3} h) = 0, \quad \xi > 0, \quad x \in \Omega \\ \partial_{x} h = \partial_{x}^{3} h = 0, \quad \xi > 0, \quad x \in \partial \Omega \\ h(0, \cdot) = h_{0} > 0, \quad x \in \Omega \end{cases}$$

2." Standard parabolic theory " analytic semigroups in a nutshell Goal: short-time existence + maximal regularity Method: write equation as Cauchy problem $\begin{cases} \partial_{e}h + A[h]h = F(h) & in \Omega \\ B(h) = O & on \partial \Omega \\ u(O) = u_{O} \end{cases}$ $A[g]h = g^{n}\partial_{x}^{4}h, \qquad B(h) = \begin{pmatrix} \partial_{x}h \\ \partial_{x}h \end{pmatrix}$ $= (h) - \partial_{x}(h) \partial_{x}^{3}h$ where $\mp(h) = \partial_{\kappa}(q^n) \partial_{\kappa}^{s} h$ and use semigroup theory + fixed - point arguments

Semigroups for bounded operators
Cauchy problem: A bounded operator on
$$X$$

 $\begin{cases} \partial_{t}u + Au = O \\ u(O) = u_{o} \end{cases}$
has solution $u(t) = T(t)u_{o} = e^{-tA}u_{o}$
Note:

1)
$$T(0) = Id$$

2) $T(t+s) = T(t)T(s)$ $\forall s, t \ge 0$ $(T(t))_{t>0}$ is a
3.) $\lim_{t\to 0} T(t)x = x$ $\forall x \in X$ $C_0 = semigroup$
4.) $\lim_{t\to 0} \frac{T(t)x - x}{t} = -Ax$ $-A$ is the generator
of the semigroup
Recall: $e^{-tA} = \frac{1}{2\pi i} \int e^{tx} (x+A)^{-1} dx$ $e^{-tx} = \frac{1}{2\pi i} \int \frac{e^{tx}}{b^{b}} dx$

Analytic semigroups
Tix unbounded operator
$$A: D(A) c \times \rightarrow X$$
, $\overline{D}(A) = X$ Benech space,
 Fix unbounded operator $A: D(A) c \times \rightarrow X$, $\overline{D}(A) = X$ Benech space,
 $e.g. A = g^n \partial_x^4$ for $g \in C^{\infty}(\overline{\Omega}), g > O$, $X = L^2(\Omega); D(A) \sim H^{1}(\Omega)$
 $+ b.c.$

Definition: sectorial operator
• sector
$$W + \sum_{\overline{z}+\alpha} cg(z-A)$$

• resoluent bound: $\|(\lambda + A)^{-1}\|_{op} \leq \frac{M}{|\lambda - \omega|}$
Definition: sectorial operators
have a netural semigroup
 $e^{-tA} = \begin{cases} Id_{X}, & t=0\\ \frac{1}{2\pi}; \int e^{t\lambda} (\lambda + A)^{-1} d\lambda, t=0 \end{cases}$
Remark: $e^{-tA} \in L(K) \forall t = 0$ is a family of bounded
Direar operators

Properties
$$T(4) = e^{-tA}$$

1. $T(4)$ forms strongly continuous semigroup
(a) $T(t+s) = T(4)T(s)$, $T(0) = Id$
(b) $\lim_{t \to 0} T(t) = x \quad \forall x \in X$
2. $-A$ is generator of $T(4)$
 $\lim_{t \to 0} \frac{e^{-tA} \times -x}{t} = -A \times \quad \forall x \in D(4)$
3. smoothing property. observe: $(\lambda + A)^{-1} \operatorname{maps} X \to D(A)$
and $D(A^{k-1}) \to D(A^{k})$
 $= : e^{-tA} \times E D(A^{k}) \quad \forall k \in N, \ t>0, x \in X$
4. e^{-tA} solves Cauphy problem: $e^{-tA} \in C^{\infty}((0,\infty); L(x))$
 $\frac{d^{k}}{dt^{k}} e^{-tA} = (-A)^{k} e^{-tA}, \ t>0$
5. $e^{-tA} \operatorname{hos} analytic extension e^{-zA} to the sector $\sum_{\alpha=\varepsilon}^{\infty}$
and $\lim_{z\to0} T(z) = x \quad \forall x \in X \quad if \ z \in \Sigma_{P} \quad \forall B < \alpha$.$

Definition
- A is infinitectimal generator of analytic semigroup if
- A satisfies 1. + 5. for some a =0
H(x) = U Ha(x) = set of generators of analytic semigroups
Theorem (Hille) TFAE
- A e H(X)
- A is sectorial
- [Re X = W] C O(-A) and
II(X+A)⁻¹II_on < M
H(X+A)⁻¹II_on < M
- (Hille) - (M)
Cauchy problem
(
$$\frac{d}{dt} = (L) + Au(L) = 0$$

 $u(0) = u_0$
has solution $u(L) = e^{-LA} \in C((E0,\infty); X) \cap C^{\infty}((0,\infty); D(L^{k}))$ $\forall k$
- if useD(A), then also $u \in C^{1}((E0,\infty); X)$

4. Outlook

· Strong solution concept fails, when solutions con become zero -> weak solution theory with $\varphi \in C^{\infty}(\Sigma)$ to obtain $eest \quad \partial_{\xi}h + \partial_{\chi}(h^{\prime}\partial_{\kappa}^{\xi}h) = 0$

$$\int_{SL} \partial_{\xi} h \varphi - \int_{h \otimes 0} h^{2} \partial_{\kappa} \eta = 0$$

· Idea: construct weak solutions by regularisation h' -> h'+E "naive regularisation" La study limit points of he via energy methods

Energy-discipation mechanism

$$\frac{d}{dt} \int |\partial_x h_{\mathcal{E}}(t)|^2 dx = -\int (h^{n}te) |\partial_x^3 h_{\mathcal{E}}|^2 dx$$
is obtained by teshing the equation with $\partial_x^2 h_{\mathcal{E}}$

Questions:

- · non-negativity of solutions?
- · uniqueness?
- . what happens at points, where h= 0?

References for analytic semigroups A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems for quasilinear cuolution equations, Lopabinetic - Shapiro, ... H. Amann, Nonhomogeneous Linear and Quasilinear

Elliptic and Parabolic Boundary Value Problems)