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Non-Newtonian thin films

Thin fluid film
• incompressible
• viscous
• homogeneous in y -direction
• capillary-driven

Non-Newtonian rheology
• power-law fluid:
µ(|ε|) = µ0|ε|
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Dynamics of non-Newtonian thin films
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Lubrication approximation: char. height
char. length −→ 0

∂tu + ∂x
(
un|∂3

x u|α−1∂3
x u
)

= 0, t > 0, x ∈ Ω
∂xu = un|∂3

x u|α−1∂3
x u = 0, t > 0, x ∈ ∂Ω

u(0, x) = u0(x), x ∈ Ω
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Dynamics of non-Newtonian thin films

Lubrication approximation: char. height
char. length −→ 0

∂tu + ∂x
(
un|∂3

x u|α−1∂3
x u
)

= 0, t > 0, x ∈ Ω
∂xu = un|∂3

x u|α−1∂3
x u = 0, t > 0, x ∈ ∂Ω

u(0, x) = u0(x), x ∈ Ω

Important properties

• Conservation of mass
• Energy-dissipation inequality

E [u](t) +
∫ t

0
D[u](t)dt = E [u0]

E [u] = 1
2

∫
Ω
|∂xu|2dx , D[u] =

∫
Ω

un|∂3
x u|α+1dx



Goal of this talk

Observation
The positive steady states are precisely the constant solutions.

Questions

• If u0 ≈ ū0 = 1
|Ω|
∫

Ω u0dx , does then u(t, x)→ ū0 as t →∞?
• Are there explicit bounds for the decay?

Answers
For all flow-behaviour exponents α > 0 and all ū0, there is ε > 0 such
that ‖u0 − ū0‖H1 < ε there is a global positive weak solution u such that

shear-thickening

α < 1
shear-thinning

α > 1

Polynomial decay

‖u(t)− ū0‖H1(Ω) ≤ Cε

(1+Cεα−1t)
1

α−1

Newtonian

α = 1
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• Are there explicit bounds for the decay?

Answers
For all flow-behaviour exponents α > 0 and all ū0, there is ε > 0 such
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Exponential decay

‖u(t)− ū0‖H1(Ω) ≤ Ce−γt



Short-time existence of weak solutions

Weak solutions

∫ T

0
〈ut , ϕ〉W 1

α+1(Ω) dt =
∫ T

0

∫
Ω

unψ(∂3
x u)ϕx dx dt, ∀ϕ ∈ Lα+1

t W 1,α+1
x

here: ψ(s) = |s|α−1s
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Short history:

• Newtonian fluid α = 1:
• local positive strong solutions e.g. via semigroup theory
• global non-negative weak solutions (Bernis–Friedman,

Beretta–Bertsch–dalPasso, Bertozzi–Pugh,...)
• Non-Newtonian fluids

• global non-negative weak solutions (Ansini–Giacomelli,
Gladbach–J.–Lienstromberg)



Short-time existence of weak solutions

Weak solutions

∫ T

0
〈ut , ϕ〉W 1

α+1(Ω) dt =
∫ T

0

∫
Ω

unψ(∂3
x u)ϕx dx dt, ∀ϕ ∈ Lα+1

t W 1,α+1
x

here: ψ(s) = |s|α−1s

We only need positive local weak solutions!
Construction

• Approximate ψ by ψσ(s) =
(
s2 + σ2)α−1

2 s
• Construct solutions via semigroup theory
• uniform bounds and passage to the limit
• energy-dissipation equality
• bootstrap solutions as long as they remain positive



On the proof

Lojasiewicz–Simon-type inequality
d
dt E [u](t) = −D[u](t) ≤ −C

(
E [u](t)

)α+1
2

Strategy of the proof

• bootstrap local weak solutions
• apply Gronwall’s inequality

2
1− α

d
dt
(
E [u](t)

) 1−α
2 ≤ −C



Further results

Ellis-law rheology

Dynamics of thin film


ut +

(
un(1 + |uuxxx |α−1)uxxx

)
x = 0, t > 0, x ∈ Ω,

ux (t, x) = uxxx (t, x) = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,

Long-time behaviour: ‖u(t, x)− ū0‖H1(Ω) ≤ Ce−γt



Further results

Different geometries

The same results hold in Taylor–Couette geometry
(Lienstromberg–Pernas-Castano–Velazquez, Lienstromberg–Velazquez)

ω



Further results

Guaranteed lift-off

Small energy initial values have guaranteed lift-off in finite time.



Open problems and closing remarks

• Does similar long-time behaviour persist in different geometries or
under inclusion of additional effects?

heated plane

u(t, x)

• Can one derive stability in the droplet case (orbital stability)?

contact angle

x



Thank you for your attention!

Questions?


