Pattern Formation and Film Rupture in an Asymptotic Model of the Bénard–Marangoni Problem

April 27, 2024

Jonas Jansen joint work with Gabriele Brüll and Bastian Hilder

Lunds Universitet

Thin fluid films on heated planes

Consider an incompressible Newtonian thin fluid film on a heated plane

Pattern formation in experiments

Source: H. Bénard, Les tourbillons cellulaires dans une nappe liquide, 1900.

In 1900, Henri Bénard observed the formation of regular polygonal pattern...

Pattern formation in experiments

... and even
dewetting phenomena
have been demonstrated
experimentally.

Source: VanHook et al., Long-wavelength surface-tension-driven Bénard convection: experiment and theory, 1997.

The thermocapillary effect

In 1956, M. J. Block explained the formation of pattern with the **thermocapillary effect**,

in 1958, J. R. A. Pearson confirmed this by theoretical considerations.

The thermocapillary effect

Due to dependence of surface tension on temperature, temperature variations lead to stress imbalances on the surface.

The Boussinesq-Navier-Stokes model

$$\left\{ \begin{array}{lcl} \partial_t h + u_1 \partial_x h & = & u_2 \\ \Sigma(p, \vec{u}) \cdot \vec{n} & = & \sigma \kappa \vec{n} - (\partial_x \sigma) \vec{\tau} \\ \nabla T \cdot \vec{n} & = & -K(T - T_g) \end{array} \right.$$

$$\left\{ \begin{array}{lll} \partial_t \vec{u} + (\vec{u} \cdot \nabla) \vec{u} &=& -\nabla p + \mu \Delta \vec{u} - \vec{g} \\ \operatorname{div} \vec{u} &=& 0 \\ \partial_t T + \vec{u} \cdot \nabla T &=& \chi \Delta T \end{array} \right.$$

$$\left\{ \begin{array}{lcl} \vec{u} & = & 0 \\ T & = & T_s \end{array} \right.$$

where $\sigma(x) = \sigma_0 - \alpha T(x)$

The asymptotic model

Rescaling $t \to \varepsilon^2 t$ and $x \to \varepsilon x$, gives dynamics for h in lowest order

Deformational model

$$\partial_t h + \partial_x \left[h^3 (\partial_x^3 h - g \partial_x h) + M \frac{h^2}{(1+h)^2} \partial_x h \right] = 0, \quad t > 0, \ x \in \mathbb{R}$$

$$g > 0 \quad \text{gravitational constant}$$

$$M > 0 \quad \text{Marangoni number} \sim T_s - T_g$$

The dispersion relation

$$\partial_t h + \partial_x \left[h^3 (\partial_x^3 h - g \partial_x h) + M \frac{h^2}{(1+h)^2} \partial_x h \right] = 0$$

Linearisation about $\bar{h} = 1$:

$$\partial_t v = -\partial_x^4 v - \left(\frac{M}{4} - g\right) \partial_x^2 v$$

 $v = \exp(\lambda t - ikx)$ is a solution iff

$$\lambda(k) = -k^4 + \left(\frac{M}{4} - g\right)k^2$$

(conserved) long-wave instability

study

bifurcation of stationary periodic pattern

with fixed wave number k_0 at $M^*(k_0) = M^* + 4k_0^2$ and the existence of

film-rupture solutions

via global bifurcation theory

1. existence of a **local bifurcation branch** at $M^*(k_0) = M^* + 4k_0^2$ consisting of $\frac{2\pi}{k_0}$ -periodic even stationary solutions

2. this branch can be extended to a **global bifurcation branch**

3. limit points exhibit **film rupture** and are weak even periodic stationary solutions

- 1. existence of a **local bifurcation** branch at $M^*(k_0) = M^* + 4k_0^2$ consisting of $\frac{2\pi}{k_0}$ -periodic even stationary solutions
- this branch can be extended to a global bifurcation branch
- limit points exhibit film rupture and are weak even periodic stationary solutions

$$\partial_{x}\left[h^{3}(\partial_{x}^{3}h-g\partial_{x}h)+M\frac{h^{2}}{(1+h)^{2}}\partial_{x}h\right]=0$$

$$h^{3}(\partial_{x}^{3}h - g\partial_{x}h) + M\frac{h^{2}}{(1+h)^{2}}\partial_{x}h = 0$$

$$\partial_x^2 h - gh + M\left(\frac{1}{1+h} + \log(\frac{h}{1+h})\right) + MK = 0$$

$$\partial_x^2 h - gh + M\left(\frac{1}{1+h} + \log\left(\frac{h}{1+h}\right)\right) + MK = 0$$

Bifurcation problem for h = 1 + v

$$\mathcal{F}(v; M) = \partial_x^2 v - gv + M\left(\frac{1}{2+v} + \log(\frac{1+v}{2+v})\right) + MK(v) = 0$$

where

$$K(v) = \int_{-\pi/k_0}^{\pi/k_0} \frac{1}{2+v} + \log(\frac{1+v}{2+v}) dx$$

function spaces

$$\mathcal{Y} = \left\{ v \in L_{\mathrm{per}}^2 : \int v = 0, \ v \text{ even} \right\}, \quad \mathcal{X} = \mathcal{Y} \cap H_{\mathrm{per}}^2$$

$$\mathcal{U} = \left\{ v \in \mathcal{X} : v > -1 \right\}$$

Analytic global bifurcation theory

Establishing film rupture

Step 1: Ruling out

(C3) **closed loop** (v(s), M(s)) is a closed loop

Nodal property

Establishing film rupture

Step 2: showing that only

(C2) film rupture

$$v(s) \longrightarrow \partial \mathcal{U}$$

$$\partial_x^2 v - gv + M\left(\frac{1}{2+v} + \log(\frac{1+v}{2+v})\right) + MK = 0 \text{ is a Hamiltonian system}$$

Thank you for your attention! Questions?

More information:

