curriculum vitae
General Information
Full Name | Jonas Jansen |
Date of Birth | 25th October 1992 |
Languages | English, German |
Education
- 2022
PhD in Mathematics
Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Thesis: "Flows for Viscous Fluids: Fluctuations for Stochastic Homogenisation in Perforated Domains, and Non-Newtonian Thin-Film Models".
- Ph.D. Advisor: Juan J. L. Velázquez.
- 2018
Master's degree in Mathematics
Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Thesis: "Renormalization group methods for Stochastic PDEs".
- Supervisor: Massimiliano Gubinelli.
Experience
- 2022 - today
PostDoc
LTH, Lunds Universitet, Lund, Sweden
- 2018 - 2022
Wissenschaftlicher Mitarbeiter
Institute for Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
Teaching Experience
- 2023
Tutor
- Endimensionell analysis (B1) (Lund)
- 2023
Lecturer
- Ph.D. course on Resonances in Dynamical Systems
- 2023
Supervisor
- Matematisk kommunikation (Lund)
- 2022
Teaching Assistant
- Nonlinear PDE II (Bonn).
- 2021-2022
Undergraduate Seminar
- Fourier Multipliers and Pseudodifferential Operators (Bonn, with Olli Saari).
- 2021-2022
Teaching Assistant
- Nonlinear PDE I (Bonn).
- 2021
Graduate Seminar
- Seminar on Fluid Dynamics (Bonn, with Christina Lienstromberg).
- 2021
Teaching Assistant
- PDE and Modelling (Bonn).
- 2020-2021
Teaching Assistant
- PDE and Functional Analysis (Bonn).
- 2020
Teaching Assistant
- Einführung in die Partiellen Differentialgleichungen (Bonn).
- 2019-2020
Teaching Assistant
- Analysis III (Bonn).
- 2019
Teaching Assistant
- PDE and Modelling (Bonn).
- 2018-2019
Teaching Assistant
- Analysis I (Bonn).
- 2018
Teaching Assistant
- Einführung in die Partiellen Differentialgleichungen (Bonn).
Academic Interests
-
Pattern-formation and stability in asymptotic fluid models
- Patterns in models of the Bénard-Marangoni problem
- Thin films on inclined planes
- Quasilinear center-manifold theory
- Local/global bifurcation theory
-
Non-Newtonian Thin-Film Flows
- Modelling.
- Existence, uniqueness and stability properties of weak solutions.
- Qualitative properties close to the contact point.
-
Homogenisation in Perforated Domains