curriculum vitae

General Information

Full Name Jonas Jansen
Date of Birth 25th October 1992
Languages English, German

Education

  • 2022
    PhD in Mathematics
    Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
    • Thesis: "Flows for Viscous Fluids: Fluctuations for Stochastic Homogenisation in Perforated Domains, and Non-Newtonian Thin-Film Models".
    • Ph.D. Advisor: Juan J. L. Velázquez.
  • 2018
    Master's degree in Mathematics
    Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
    • Thesis: "Renormalization group methods for Stochastic PDEs".
    • Supervisor: Massimiliano Gubinelli.

Experience

  • 2022 - today
    PostDoc
    LTH, Lunds Universitet, Lund, Sweden
  • 2018 - 2022
    Wissenschaftlicher Mitarbeiter
    Institute for Applied Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Teaching Experience

  • 2023
    Tutor
    • Endimensionell analysis (B1) (Lund)
  • 2023
    Lecturer
  • 2023
    Supervisor
    • Matematisk kommunikation (Lund)
  • 2022
    Teaching Assistant
    • Nonlinear PDE II (Bonn).
  • 2021-2022
    Undergraduate Seminar
    • Fourier Multipliers and Pseudodifferential Operators (Bonn, with Olli Saari).
  • 2021-2022
    Teaching Assistant
    • Nonlinear PDE I (Bonn).
  • 2021
    Graduate Seminar
    • Seminar on Fluid Dynamics (Bonn, with Christina Lienstromberg).
  • 2021
    Teaching Assistant
    • PDE and Modelling (Bonn).
  • 2020-2021
    Teaching Assistant
    • PDE and Functional Analysis (Bonn).
  • 2020
    Teaching Assistant
    • Einführung in die Partiellen Differentialgleichungen (Bonn).
  • 2019-2020
    Teaching Assistant
    • Analysis III (Bonn).
  • 2019
    Teaching Assistant
    • PDE and Modelling (Bonn).
  • 2018-2019
    Teaching Assistant
    • Analysis I (Bonn).
  • 2018
    Teaching Assistant
    • Einführung in die Partiellen Differentialgleichungen (Bonn).

Academic Interests

  • Pattern-formation and stability in asymptotic fluid models
    • Patterns in models of the Bénard-Marangoni problem
    • Thin films on inclined planes
    • Quasilinear center-manifold theory
    • Local/global bifurcation theory
  • Non-Newtonian Thin-Film Flows
    • Modelling.
    • Existence, uniqueness and stability properties of weak solutions.
    • Qualitative properties close to the contact point.
  • Homogenisation in Perforated Domains